Liquids \(\mathrm{A}\) and \(\mathrm{B}\) form an ideal solution. The plot of
\(\frac{1}{X_{\mathrm{A}}}\) ( \(Y\) -axis) versus \(\frac{1}{Y_{\mathrm{A}}}\)
\(\left(X\right.\) -axis) \(\left(\right.\) where \(X_{\mathrm{A}}\) and
\(Y_{\mathrm{A}}\) are the mole fractions of A in liquid and vapour phases at
equilibrium, respectively) is linear whose slope and intercept, respectively,
are given as
(a) \(\frac{P_{\Lambda}^{o}}{P_{\mathrm{B}}^{\circ}},
\frac{\left(P_{\mathrm{A}}^{0}-P_{\mathrm{B}}^{\circ}\right)}{P_{\mathrm{B}}^{\circ}}\)
(b) \(\frac{P_{\mathrm{A}}^{\circ}}{P_{\mathrm{B}}^{\circ}},
\frac{\left(P_{\mathrm{B}}^{0}-P_{\mathrm{A}}^{\circ}\right)}{P_{\mathrm{B}}^{\circ}}\)
(c) \(\frac{P_{\mathrm{B}}^{\circ}}{P_{\mathrm{A}}^{\circ}},
\frac{\left(P_{\mathrm{A}}^{\mathrm{o}}-P_{\mathrm{B}}^{\circ}\right)}{P_{\mathrm{B}}^{\circ}}\)
(d) \(\frac{P_{\mathrm{B}}^{\circ}}{P_{\mathrm{A}}^{\circ}},
\frac{\left(P_{\mathrm{B}}^{0}-P_{\mathrm{A}}^{\circ}\right)}{P_{\mathrm{B}}^{\circ}}\)