Chapter 13: Problem 6
The general rate equation for an ordered, single-displacement reaction where \(A\) is the leading substrate is $$v=\frac{V_{\max }[\mathrm{A}][\mathrm{B}]}{\left(K_{\mathrm{S}}^{\mathrm{A}} K_{m}^{\mathrm{B}}+K_{\mathrm{m}}^{\mathrm{A}}[\mathrm{B}]+K_{\mathrm{m}}^{\mathrm{B}}[\mathrm{A}]+[\mathrm{A}][\mathrm{B}]\right)}$$ Write the Lineweaver-Burk (double-reciprocal) equivalent of this equation and from it calculate algebraic expressions for the following: a. The slope b. The \(y\) -intercepts c. The horizontal and vertical coordinates of the point of intersection when \(1 / v\) is plotted versus \(1 /[\mathrm{B}]\) at various fixed concentrations of \(\mathbf{A}\)