Problem 44
Elemental sulfur occurs in several forms, with rhombic sulfur being the most stable under normal conditions and monoclinic sulfur slightly less stable. The standard cnthalpies of combustion of the two forms to sulfur dioxide are \(-296.83\) and \(-297.16 \mathrm{~kJ} \cdot \mathrm{mol}^{-1}\), respectively. Calculate the change in molar enthalpy for the rhombic \(\rightarrow\) monoclinic transition.
Problem 45
Two successive stages in the industrial manufacture of sulfuric acid are the combustion of sulfur and the oxidation of sulfur dioxide to sulfur trioxide. From the standard reaction enthalpies $$ \begin{gathered} \mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{2}(\mathrm{~g}) \\ \Delta H^{\circ}=-296.83 \mathrm{~kJ} \\ 2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) \\ \Delta H^{\circ}=-791.44 \mathrm{~kJ} \end{gathered} $$ Calculate the reaction enthalpy for the oxidation of sulfur dioxide to sulfur trioxide in the reaction \(2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})\).
Problem 46
In the manufacture of nitric acid by the oxidation of ammonia, the first product is nitric oxide, which is then cxidized to nitrogen dioxide. From the standard reaction enthalpies $$ \begin{gathered} \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}(\mathrm{g}) \\ \Delta H^{\circ}=+180.5 \mathrm{~kJ} \\ \mathrm{~N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \\ \Delta H^{\circ}=+66.4 \mathrm{~kJ} \end{gathered} $$ calculate the standard reaction enthalpy for the oxidation of nitric oxide to nitrogen dioxide: $$ 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) $$
Problem 47
Calculate the enthalpy of the reaction \(\mathrm{P}_{4}(\mathrm{~s})+10 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{PCl}_{5}(\mathrm{~s})\) from the reactions $$ \begin{gathered} \mathrm{P}_{4}(\mathrm{~s})+6 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{PCl}_{3}(\mathrm{I}) \\ \Delta H^{\circ}=-1278.8 \mathrm{~kJ} \\ \mathrm{PCl}_{3}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{PCl}_{5}(\mathrm{~s}) \\ \Delta H^{m}=-124 \mathrm{~kJ} \end{gathered} $$
Problem 49
Determine the reaction enthalpy for the hydrogenation of ethyne to ethane, \(\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\) \(2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})\), from the following data: enthalpy of combustion of ethyne, \(-1300 \mathrm{~kJ} \cdot \mathrm{mol}^{-1}\); enthalpy of combustion of ethane, \(-1560 \mathrm{~kJ} \cdot \mathrm{mol}^{-1}\); enthalpy of combustion of hydrogen, \(-286 \mathrm{~kJ} \cdot \mathrm{mol}^{-1}\).
Problem 52
Calculate the reaction enthalpy for the formation of anhydrous aluminum chloride, \(2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{~s})\), from the following data: $$ \begin{array}{ll} 2 \mathrm{Al}(\mathrm{s})+6 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g}) \\ & \Delta H^{\circ}=-1049 \mathrm{~kJ} \\ \mathrm{HCl}(\mathrm{g}) \longrightarrow \mathrm{HCl}(\mathrm{aq}) & \Delta H^{\circ}=-74.8 \mathrm{~kJ} \\ \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HCl}(\mathrm{g}) & \Delta H^{\circ}=-185 \mathrm{~kJ} \\ \mathrm{AlCl}_{3}(\mathrm{~s}) \longrightarrow \mathrm{AlCl}_{3}(\mathrm{aq}) & \Delta H^{\circ}=-323 \mathrm{~kJ} \end{array} $$
Problem 53
Write the thermochemical equations that give the values of the standard enthalpies of formation for (a) \(\mathrm{KClO}_{3}\) (s), potassium chlorate; (b) \(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}\) (s), glycine(s); (c) \(\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})\), alumina.
Problem 54
Write the thermochemical equations that give the values of the standard enthalpies of formation for (a) \(\mathrm{CH}_{2} \mathrm{COOH}\) (I); (b) \(\mathrm{SO}_{2}\) (g); (c) \(\mathrm{CO}_{2}\) (g).
Problem 60
Use the enthalpies of formation in Appendix \(2 \mathrm{~A}\) to calculate the standard enthalpy of the following reactions: (a) the replacement of deuterium by ordinary hydrogen in heavy water: \(\mathrm{H}_{2}(\mathrm{~g})+\mathrm{D}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{D}_{2}(\mathrm{~g})\) (b) the removal of sulfur from the hydrogen sulfide and sulfur dioxide in natural gas: \(2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\) (c) the oxidation of ammonia: \(4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})\)
Problem 61
Using standard enthalpies of formation from Appendix \(2 \mathrm{~A}\), calculate the standard reaction enthalpy for each of the following reactions: (a) the final stage in the production of nitric acid, when nitrogen dioxide dissolves in and reacts with water: \(3 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{g})\) (b) the formation of boron trifluoride, which is widely used in the chemical industry: \(\mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CaF}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{BF}_{3}(\mathrm{~g})+3 \mathrm{CaO}(\mathrm{s})\) (c) the formation of a sulfide by the action of hydrogen sulfide on an aqueous solution of a base: \(\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{K}_{2} \mathrm{~S}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\)