Chapter 22: Problem 1
Trickle bed oxidation. Dilute aqueous ethanol (about \(2-3 \%\) ) is oxidized to acetic acid by the action of pure oxygen at 10 atm in a trickle bed reactor packed with palladium-alumina catalyst pellets and kept at \(30^{\circ} \mathrm{C}\). According to Sato et al., Proc. First Pacific Chem. Eng. Congress, Kyoto, p. 197,1972 the reaction proceeds as follows: $$\begin{array}{c} \mathrm{O}_{2}(g \rightarrow l)+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(l) \frac{\mathrm{on}}{\mathrm{catalyst}} \mathrm{CH}_{3} \mathrm{COOH}(l)+\mathrm{H}_{2} \mathrm{O} \\ -\frac{-a-\alpha-}{(\mathrm{A})} \end{array}$$ with rate $$-r_{\mathrm{A}}^{\prime}=k^{\prime} C_{\mathrm{A}}, \quad k^{\prime}=1.77 \times 10^{-5} \mathrm{m}^{3} / \mathrm{kg} \cdot \mathrm{s}$$ Find the fractional conversion of ethanol to acetic acid if gas and liquid are fed to the top of a reactor in the following system: Gas stream: \(\quad v_{g}=0.01 \mathrm{m}^{3} / \mathrm{s}, \quad H_{\mathrm{A}}=86000 \mathrm{Pa} \cdot \mathrm{m}^{3} / \mathrm{mol}\) Liquid stream: \(\quad v_{l}=2 \times 10^{-4} \mathrm{m}^{3} / \mathrm{s}, \quad C_{\mathrm{B} 0}=400 \mathrm{mol} / \mathrm{m}^{3}\) Reactor: \(\quad 5 \mathrm{m}\) high, \(\quad 0.1 \mathrm{m}^{2}\) cross section, \(\quad f_{s}=0.58\) \(\begin{array}{ll}\text { Catalyst: } & d_{p}=5 \mathrm{mm}, \quad \rho_{s}=1800 \mathrm{kg} / \mathrm{m}^{3} \\ & \mathscr{D}_{e}=4.16 \times 10^{-10} \mathrm{m}^{3} / \mathrm{m} \mathrm{cat} \cdot \mathrm{s}\end{array}\) \(\begin{array}{lll}\text { Kinetics: } & k_{\mathrm{A} g} a_{i}=3 \times 10^{-4} \mathrm{mol} / \mathrm{m}^{3} \cdot \mathrm{Pa} \cdot \mathrm{s}, & k_{\mathrm{A}} a_{i}=0.02 \mathrm{s}^{-1} \\ & k_{\mathrm{A} c}=3.86 \times 10^{-4} \mathrm{m} / \mathrm{s}\end{array}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.