Write equations showing the ions present after the following strong electrolytes are dissolved in water. a. \(\mathrm{HNO}_{3}\) b. \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) c. \(\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}\) d. \(\mathrm{SrBr}_{2}\) e. \(\mathrm{KClO}_{4}\) f. \(\mathrm{NH}_{4} \mathrm{Br}\) g. \(\mathrm{NH}_{4} \mathrm{NO}_{3}\) h. \(\mathrm{CuSO}_{4}\) i. NaOH

Short Answer

Expert verified
a. \(\mathrm{HNO}_{3} \rightarrow \mathrm{H}^{+} + \mathrm{NO}_{3}^{-}\) b. \(\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow 2\mathrm{Na}^{+} + \mathrm{SO}_{4}^{2-}\) c. \(\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \rightarrow \mathrm{Al}^{3+} + 3\mathrm{NO}_{3}^{-}\) d. \(\mathrm{SrBr}_{2} \rightarrow \mathrm{Sr}^{2+} + 2\mathrm{Br}^{-}\) e. \(\mathrm{KClO}_{4} \rightarrow \mathrm{K}^{+} + \mathrm{ClO}_{4}^{-}\) f. \(\mathrm{NH}_{4} \mathrm{Br} \rightarrow \mathrm{NH}_{4}^{+} + \mathrm{Br}^{-}\) g. \(\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{NH}_{4}^{+} + \mathrm{NO}_{3}^{-}\) h. \(\mathrm{CuSO}_{4} \rightarrow \mathrm{Cu}^{2+} + \mathrm{SO}_{4}^{2-}\) i. \(\mathrm{NaOH} \rightarrow \mathrm{Na}^{+} + \mathrm{OH}^{-}\)

Step by step solution

01

a. Dissociation of \(\mathrm{HNO}_{3}\)#

When \(\mathrm{HNO}_{3}\) dissolves in water, it dissociates into hydrogen ions (\(\mathrm{H}^{+}\)) and nitrate ions (\(\mathrm{NO}_{3}^{-}\)). The equation for the dissociation of \(\mathrm{HNO}_{3}\) is: \(\mathrm{HNO}_{3} \rightarrow \mathrm{H}^{+} + \mathrm{NO}_{3}^{-}\)
02

b. Dissociation of \(\mathrm{Na}_{2} \mathrm{SO}_{4}\)#

When \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) dissolves in water, it dissociates into two sodium ions (\(\mathrm{Na}^{+}\)) and a sulfate ion (\(\mathrm{SO}_{4}^{2-}\)). The equation for the dissociation of \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) is: \(\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow 2\mathrm{Na}^{+} + \mathrm{SO}_{4}^{2-}\)
03

c. Dissociation of \(\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}\)#

When \(\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}\) dissolves in water, it dissociates into an aluminum ion (\(\mathrm{Al}^{3+}\)) and three nitrate ions (\(\mathrm{NO}_{3}^{-}\)). The equation for the dissociation of \(\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}\) is: \(\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \rightarrow \mathrm{Al}^{3+} + 3\mathrm{NO}_{3}^{-}\)
04

d. Dissociation of \(\mathrm{SrBr}_{2}\)#

When \(\mathrm{SrBr}_{2}\) dissolves in water, it dissociates into a strontium ion (\(\mathrm{Sr}^{2+}\)) and two bromide ions (\(\mathrm{Br}^{-}\)). The equation for the dissociation of \(\mathrm{SrBr}_{2}\) is: \(\mathrm{SrBr}_{2} \rightarrow \mathrm{Sr}^{2+} + 2\mathrm{Br}^{-}\)
05

e. Dissociation of \(\mathrm{KClO}_{4}\)#

When \(\mathrm{KClO}_{4}\) dissolves in water, it dissociates into a potassium ion (\(\mathrm{K}^{+}\)) and a perchlorate ion (\(\mathrm{ClO}_{4}^{-}\)). The equation for the dissociation of \(\mathrm{KClO}_{4}\) is: \(\mathrm{KClO}_{4} \rightarrow \mathrm{K}^{+} + \mathrm{ClO}_{4}^{-}\)
06

f. Dissociation of \(\mathrm{NH}_{4} \mathrm{Br}\)#

When \(\mathrm{NH}_{4} \mathrm{Br}\) dissolves in water, it dissociates into an ammonium ion (\(\mathrm{NH}_{4}^{+}\)) and a bromide ion (\(\mathrm{Br}^{-}\)). The equation for the dissociation of \(\mathrm{NH}_{4} \mathrm{Br}\) is: \(\mathrm{NH}_{4} \mathrm{Br} \rightarrow \mathrm{NH}_{4}^{+} + \mathrm{Br}^{-}\)
07

g. Dissociation of \(\mathrm{NH}_{4} \mathrm{NO}_{3}\)#

When \(\mathrm{NH}_{4} \mathrm{NO}_{3}\) dissolves in water, it dissociates into an ammonium ion (\(\mathrm{NH}_{4}^{+}\)) and a nitrate ion (\(\mathrm{NO}_{3}^{-}\)). The equation for the dissociation of \(\mathrm{NH}_{4} \mathrm{NO}_{3}\) is: \(\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{NH}_{4}^{+} + \mathrm{NO}_{3}^{-}\)
08

h. Dissociation of \(\mathrm{CuSO}_{4}\)#

When \(\mathrm{CuSO}_{4}\) dissolves in water, it dissociates into a copper ion (\(\mathrm{Cu}^{2+}\)) and a sulfate ion (\(\mathrm{SO}_{4}^{2-}\)). The equation for the dissociation of \(\mathrm{CuSO}_{4}\) is: \(\mathrm{CuSO}_{4} \rightarrow \mathrm{Cu}^{2+} + \mathrm{SO}_{4}^{2-}\)
09

i. Dissociation of \(\mathrm{NaOH}\)#

When \(\mathrm{NaOH}\) dissolves in water, it dissociates into a sodium ion (\(\mathrm{Na}^{+}\)) and a hydroxide ion (\(\mathrm{OH}^{-}\)). The equation for the dissociation of \(\mathrm{NaOH}\) is: \(\mathrm{NaOH} \rightarrow \mathrm{Na}^{+} + \mathrm{OH}^{-}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a coffee-cup calorimeter, 1.60 \(\mathrm{g} \mathrm{NH}_{4} \mathrm{NO}_{3}\) was mixed with 75.0 \(\mathrm{g}\) water at an initial temperature \(25.00^{\circ} \mathrm{C}\) . After dissolution of the salt, the final temperature of the calorimeter contents was \(23.34^{\circ} \mathrm{C}\) . a. Assuming the solution has a heat capacity of 4.18 \(\mathrm{J} / \mathrm{g}\) \(^{\circ} \mathrm{C},\) and assuming no heat loss to the calorimeter, calculate the enthalpy of solution \(\left(\Delta H_{\mathrm{soln}}\right)\) for the dissolution of \(\mathrm{NH}_{4} \mathrm{NO}_{3}\) in units of $\mathrm{kJ} / \mathrm{mol} .$ b. If the enthalpy of hydration for \(\mathrm{NH}_{4} \mathrm{NO}_{3}\) is $-630 . \mathrm{kJ} / \mathrm{mol}\( calculate the lattice energy of \)\mathrm{NH}_{4} \mathrm{NO}_{3} .$

An aqueous antifreeze solution is 40.0\(\%\) ethylene glycol \(\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)\) by mass. The density of the solution is 1.05 \(\mathrm{g} / \mathrm{cm}^{3}\) . Calculate the molality, molarity, and mole fraction of the ethylene glycol.

An unknown compound contains only carbon, hydrogen, and oxygen. Combustion analysis of the compound gives mass percents of 31.57\(\% \mathrm{C}\) and 5.30\(\%\) H. The molar mass is determined by measuring the freezing-point depression of an aqueous solution. A freezing point of $-5.20^{\circ} \mathrm{C}\( is recorded for a solution made by dissolving 10.56 \)\mathrm{g}$ of the compound in 25.0 \(\mathrm{g}\) water. Determine the empirical formula, molar mass, and molecular formula of the compound. Assume that the compound is a nonelectrolyte.

The normal boiling point of methanol is \(64.7^{\circ} \mathrm{C} .\) A solution containing a nonvolatile solute dissolved in methanol has a vapor pressure of 556 torr at \(64.7^{\circ} \mathrm{C} .\) What is the mole fraction of methanol in this solution?

Thyroxine, an important hormone that controls the rate of metabolism in the body, can be isolated from the thyroid gland. When 0.455 g thyroxine is dissolved in 10.0 g benzene, the freezing point of the solution is depressed by \(0.300^{\circ} \mathrm{C}\) . What is the molar mass of thyroxine? See Table \(11.5 .\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free