Chapter 12: Problem 4
How does temperature affect k, the rate constant? Explain.
Chapter 12: Problem 4
How does temperature affect k, the rate constant? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeRate Laws from Experimental Data: Initial Rates Method. The reaction $$2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{NOCl}(g)$$ was studied at \(-10^{\circ} \mathrm{C}\). The following results were obtained where $$\text { Rate }=-\frac{\Delta\left[\mathrm{Cl}_{2}\right]}{\Delta t}$$ $$ \begin{array}{ccc} {[\mathrm{NO}]_{0}} & {\left[\mathrm{Cl}_{2}\right]_{0}} & \text { Initial Rate } \\ (\mathrm{mol} / \mathrm{L}) & (\mathrm{mol} / \mathrm{L}) & (\mathrm{mol} / \mathrm{L} \cdot \mathrm{min}) \\ 0.10 & 0.10 & 0.18 \\ 0.10 & 0.20 & 0.36 \\ 0.20 & 0.20 & 1.45 \end{array} $$ a. What is the rate law? b. What is the value of the rate constant?
The activation energy for some reaction $$ \mathrm{X}_{2}(g)+\mathrm{Y}_{2}(g) \longrightarrow 2 \mathrm{XY}(g) $$ is 167 \(\mathrm{kJ} / \mathrm{mol}\) , and \(\Delta E\) for the reaction is $+28 \mathrm{kJ} / \mathrm{mol}$ . What is the activation energy for the decomposition of XY?
For a first order gas phase reaction \(\mathrm{A} \longrightarrow\) products, \(k=\) \(7.2 \times 10^{-4} \mathrm{s}^{-1}\) at \(660 . \mathrm{K}\) and $k=1.7 \times 10^{-2} \mathrm{s}^{-1}\( at \)720 . \mathrm{K} .$ If the initial pressure of \(\mathrm{A}\) is 536 torr at \(295^{\circ} \mathrm{C},\) how long will it take for the pressure of \(\mathrm{A}\) to decrease to 268 torr?
At \(40^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}_{2}(a q)\) will decompose according to the following reaction: $$ 2 \mathrm{H}_{2} \mathrm{O}_{2}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{O}_{2}(\mathrm{~g}) $$ The following data were collected for the concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ at various times. $$ \begin{array}{|cc|} \hline \begin{array}{c} \text { Time } \\ (\mathbf{s}) \end{array} & \begin{array}{c} {\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]} \\ (\mathrm{mol} / \mathrm{L}) \end{array} \\ \hline 0 & 1.000 \\ \hline 2.16 \times 10^{4} & 0.500 \\ \hline 4.32 \times 10^{4} & 0.250 \\ \hline \end{array} $$ a. Calculate the average rate of decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}\( between 0 and \)2.16 \times 10^{4} \mathrm{~s}$. Use this rate to calculate the average rate of production of \(\mathrm{O}_{2}(g)\) over the same time period. b. What are these rates for the time period \(2.16 \times 10^{4} \mathrm{~s}\) to \(4.32 \times 10^{4} \mathrm{~s} ?\)
Consider the general reaction $$ \mathrm{aA}+\mathrm{bB} \longrightarrow \mathrm{cC} $$ and the following average rate data over some time period \(\Delta t :\) $$ \begin{aligned}-\frac{\Delta \mathrm{A}}{\Delta t} &=0.0080 \mathrm{mol} / \mathrm{L} \cdot \mathrm{s} \\\\-& \frac{\Delta \mathrm{B}}{\Delta t}=0.0120 \mathrm{mol} / \mathrm{L} \cdot \mathrm{s} \\ \frac{\Delta \mathrm{C}}{\Delta t} &=0.0160 \mathrm{mol} / \mathrm{L} \cdot \mathrm{s} \end{aligned} $$ Determine a set of possible coefficients to balance this general reaction.
What do you think about this solution?
We value your feedback to improve our textbook solutions.