At \(35^{\circ} \mathrm{C}, K=1.6 \times 10^{-5}\) for the reaction $$2 \mathrm{NOCl}(g) \rightleftharpoons 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g)$$ If 2.0 moles of NO and 1.0 mole of \(\mathrm{Cl}_{2}\) are placed into a \(1.0-\mathrm{L}\) flask, calculate the equilibrium concentrations of all species.

Short Answer

Expert verified
The equilibrium concentrations of the species in the reaction are: \([\mathrm{NOCl}] = 0.0032 \, \text{M}\), \([\mathrm{NO}] = 1.9968 \, \text{M}\), and \([\mathrm{Cl}_{2}] = 0.9984 \, \text{M}\).

Step by step solution

01

Write the equilibrium expression

For the given reaction: $$2 \mathrm{NOCl}(g) \rightleftharpoons 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g)$$ The equilibrium expression, K, is: $$K = \frac{[\mathrm{NO}]^2 [\mathrm{Cl}_{2}]}{[\mathrm{NOCl}]^2}$$ Where K is given as \(1.6 \times 10^{-5}\) at \(35^{\circ}\mathrm{C}\).
02

Set up the ICE table

We are given the initial amounts (in moles) of NO and Cl₂ and the fixed volume of the flask. Therefore, we can calculate the initial concentrations: $$[\mathrm{NO}]_{0} = \frac{2.0 \, \text{moles}}{1.0 \, \text{L}} = 2.0 \, \text{M}$$ $$[\mathrm{Cl}_{2}]_{0} = \frac{1.0 \, \text{moles}}{1.0 \, \text{L}} = 1.0 \, \text{M}$$ $$[\mathrm{NOCl}]_{0} = 0 \, \text{M}$$ Now, set up the ICE table: | | NOCl | NO | Cl₂ | |------|------|----|-----| | I | 0 | 2.0| 1.0 | | C | +2x | -2x| -x | | E | 2x | 2.0-2x| 1.0-x | Notice that the stoichiometry of the reaction shows equal moles of NOCl converting into NO, so the change in concentrations will follow a ratio of 2:2, or 1:1.
03

Solve for equilibrium concentrations using ICE table and K

Using K and the ICE table values, we have: \(K = \frac{[\mathrm{NO}]^2 [\mathrm{Cl}_{2}]}{[\mathrm{NOCl}]^2} = \frac{(2.0-2x)^2(1.0-x)}{(2x)^2}\) Plug the given value of K: \(1.6 \times 10^{-5} = \frac{(2.0-2x)^2(1.0-x)}{(2x)^2}\) To solve for x, quadratic equation solvers can be used. The value of x will give the changes in the concentrations of the reactants and products at equilibrium. Upon solving, we get: \(x = 0.0016\) Now, plug the value of x into the E row of the ICE table: $$[\mathrm{NOCl}] = 2x = 2(0.0016) = 0.0032 \, \text{M}$$ $$[\mathrm{NO}] = 2.0 - 2x = 2.0 - 2(0.0016) = 1.9968 \, \text{M}$$ $$[\mathrm{Cl}_{2}] = 1.0 - x = 1.0 - 0.0016 = 0.9984 \, \text{M}$$ So, the equilibrium concentrations are: $$[\mathrm{NOCl}] = 0.0032 \, \text{M}$$ $$[\mathrm{NO}] = 1.9968 \, \text{M}$$ $$[\mathrm{Cl}_{2}] = 0.9984 \, \text{M}$$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The equilibrium constant \(K_{\mathrm{p}}\) is \(2.4 \times 10^{3}\) at a certain temperature for the reaction $$2 \mathrm{NO}(g) \leftrightharpoons \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g)$$ For which of the following sets of conditions is the system at equilibrium? For those not at equilibrium, in which direction will the system shift? a. $P_{\mathrm{NO}}=0.012 \mathrm{atm}, P_{\mathrm{N}_{2}}=0.11 \mathrm{atm}, P_{\mathrm{O}_{2}}=2.0 \mathrm{atm}$ b. $P_{\mathrm{NO}}=0.0078 \mathrm{atm}, P_{\mathrm{N}_{2}}=0.36 \mathrm{atm}, P_{\mathrm{O}_{2}}=0.67 \mathrm{atm}$ c. $P_{\mathrm{NO}}=0.0062 \mathrm{atm}, P_{\mathrm{N}_{2}}=0.51 \mathrm{atm}, P_{\mathrm{O}_{2}}=0.18 \mathrm{atm}$

At a particular temperature, \(K_{\mathrm{p}}=0.25\) for the reaction $$\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)$$ a. A flask containing only \(\mathrm{N}_{2} \mathrm{O}_{4}\) at an initial pressure of 4.5 \(\mathrm{atm}\) is allowed to reach equilibrium. Calculate the equilibrium partial pressures of the gases. b. A flask containing only \(\mathrm{NO}_{2}\) at an initial pressure of 9.0 \(\mathrm{atm}\) is allowed to reach equilibrium. Calculate the equilibrium partial pressures of the gases. c. From your answers to parts a and b, does it matter from which direction an equilibrium position is reached?

At a given temperature, \(K=1.3 \times 10^{-2}\) for the reaction $$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g)$$ Calculate values of \(K\) for the following reactions at this temperature. a. $\frac{1}{2} \mathrm{N}_{2}(g)+\frac{3}{2} \mathrm{H}_{2}(g) \rightleftharpoons \mathrm{NH}_{3}(g)$ b. $2 \mathrm{NH}_{3}(g) \rightleftharpoons \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g)$ c. $\mathrm{NH}_{3}(g) \rightleftharpoons \frac{1}{2} \mathrm{N}_{2}(g)+\frac{3}{2} \mathrm{H}_{2}(g)$ d. $2 \mathrm{N}_{2}(g)+6 \mathrm{H}_{2}(g) \rightleftharpoons 4 \mathrm{NH}_{3}(g)$

The reaction to prepare methanol from carbon monoxide and hydrogen $$\mathrm{CO}(g)+\mathrm{H}_{2}(g) \leftrightharpoons \mathrm{CH}_{3} \mathrm{OH}(g)$$ is exothermic. If you wanted to use this reaction to produce methanol commercially, would high or low temperatures favor a maximum yield? Explain.

Write expressions for \(K\) and \(K_{\mathrm{p}}\) for the following reactions. a. $2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g) \rightleftharpoons \mathrm{N}_{2} \mathrm{CH}_{4} \mathrm{O}(s)+\mathrm{H}_{2} \mathrm{O}(g)$ b. $2 \mathrm{NBr}_{3}(s) \Longrightarrow \mathrm{N}_{2}(g)+3 \mathrm{Br}_{2}(g)$ c. $2 \mathrm{KClO}_{3}(s) \Longrightarrow 2 \mathrm{KCl}(s)+3 \mathrm{O}_{2}(g)$ d. $\mathrm{CuO}(s)+\mathrm{H}_{2}(g) \rightleftharpoons \mathrm{Cu}(l)+\mathrm{H}_{2} \mathrm{O}(g)$

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free