In a solution with carbon tetrachloride as the solvent, the compound \(\mathrm{VCl}_{4}\) undergoes dimerization: $$2 \mathrm{VCl}_{4} \rightleftharpoons \mathrm{V}_{2} \mathrm{Cl}_{8}$$ When 6.6834 g \(\mathrm{VCl}_{4}\) is dissolved in 100.0 \(\mathrm{g}\) carbon tetrachloride, the freezing point is lowered by \(5.97^{\circ} \mathrm{C}\) . Calculate the value of the equilibrium constant for the dimerization of \(\mathrm{VCl}_{4}\) at this temperature. (The density of the equilibrium mixture is \(1.696 \mathrm{g} / \mathrm{cm}^{3},\) and \(K_{\mathrm{f}}=29.8^{\circ} \mathrm{C} \mathrm{kg} / \mathrm{mol}\) for \(\mathrm{CCl}_{4} . )\)

Short Answer

Expert verified
The equilibrium constant for the dimerization of VCl4 at this temperature is \(5.62 \times 10^{-2}\).

Step by step solution

01

Calculate the molality of VCl4 in the solution

We know that the freezing point depression is given by the formula: $$ΔT_f = K_f × \text{molality}$$ Where ΔT_f is the freezing point depression, K_f is the cryoscopic constant for the solvent, and the molality is the concentration of the solute. We are given ΔT_f = 5.97°C and K_f = 29.8°C kg/mol, so we can solve for the molality: $$\text{molality} = \dfrac{ΔT_f}{K_f} = \dfrac{5.97\,^{\circ}\text{C}}{29.8\,^{\circ}\text{C·kg/mol}} = 0.2 \text{mol/kg (carbon tetrachloride)}$$
02

Calculate the moles of VCl4 and carbon tetrachloride

First, find the moles of VCl4 in the solution: We are given 6.6834 g of VCl4, and the molar mass of VCl4 = 152.88 g/mol $$\text{moles}_{VCl4} = \dfrac{\text{mass}}{\text{molar mass}} = \dfrac{6.6834\,\text{g}}{152.88\,\text{g/mol}} = 0.0437\, \text{mol}$$ Next, find the moles of carbon tetrachloride solvent: Given 100 g of solvent and the molar mass of carbon tetrachloride = 153.82 g/mol $$\text{moles}_{CCl4} = \dfrac{\text{mass}}{\text{molar mass}} = \dfrac{100\,\text{g}}{153.82\,\text{g/mol}} = 0.65\, \text{mol}$$
03

Calculate the initial concentration of VCl4 and V2Cl8

Now, let us find the initial concentration of the two compounds in the equilibrium equation using the volume of the solution. The volume can be calculated using the density of the solution. $$\text{mass}_{total} = \text{mass}_{VCl4} + \text{mass}_{CCl4} = 6.6834\,\text{g} + 100\,\text{g} = 106.6834\,\text{g}$$ Given, density \(=1.696\, \text{g/cm}^{3}\) \(\implies\) Volume = \(\dfrac{\text{mass}_{total}}{\text{density}} = \dfrac{106.6834\,\text{g}}{1.696\, \text{g/cm}^{3}} = 62.92\,\text{cm}^{3} = 62.92 \times 10^{-3}\, \text{L}\) Now, we can find the initial concentration of VCl4 and V2Cl8: $$[\text{VCl4}]_{initial} = \dfrac{\text{moles}_{VCl4}}{\text{volume}} = \dfrac{0.0437\,\text{mol}}{62.92 \times 10^{-3}\, \text{L}} = 0.694\,\text{M}$$ Since there is no dimer to start, \([\text{V2Cl8}]_{initial} = 0\,\text{M}\). Partial equilibrium equation: $$2 \,\text{VCl4} \rightleftharpoons \text{V2Cl8}$$ $$(0.694 - 2x_\text{eq})\quad \text{--->}\quad \quad x_\text{eq}$$
04

Calculate the mole ratio of VCl4 and V2Cl8 at equilibrium

Now using the initial concentrations and the molality we calculated in step 1, we can calculate the moles of VCl4 and V2Cl8 at equilibrium based on their mole fraction in the solution $$\text{mole fraction}_{VCl4} = \dfrac{\text{moles}_{VCl4}}{\text{moles}_{VCl4} + \dfrac{1}{2}\text{moles}_{V2Cl8}}$$ Using the molality and moles of carbon tetrachloride, we can calculate the mole fraction $$\text{x}_{VCl4} = \dfrac{\text{molality} \times \text{moles}_{CCl4}}{\text{moles}_{VCl4} + \dfrac{1}{2}\text{moles}_{V2Cl8}}$$ $$0.2\, \text{mol/kg} × 0.65\, \text{mol} = \dfrac{0.0437\, \text{mol}-2x_\text{eq}+x_\text{eq}}{0.0437\, \text{mol}+0.5x_\text{eq}}$$ By solving this equation, we get: $$x_\text{eq} = 0.0235\, \text{M}$$ Now, we can find the \([\text{VCl4}]_{eq}\) and \([\text{V2Cl8}]_{eq}\). $$[\text{VCl4}]_{eq} = 0.694\, \text{M} - 2x_\text{eq} = 0.694\, \text{M} - 2(0.0235\, \text{M}) = 0.647\, \text{M}$$ $$[\text{V2Cl8}]_{eq} = x_\text{eq} = 0.0235\, \text{M}$$
05

Calculate the equilibrium constant

Finally, we can calculate the equilibrium constant using the concentrations of VCl4 and V2Cl8 at equilibrium. $$K_{eq} = \dfrac{[\text{V2Cl8}]_{eq}}{[\text{VCl4}]_{eq}^2} = \dfrac{0.0235\, \text{M}}{(0.647\, \text{M})^2} = 5.62 \times 10^{-2}$$ Hence, the equilibrium constant for the dimerization of VCl4 at this temperature is \(5.62 \times 10^{-2}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Ethyl acetate is synthesized in a nonreacting solvent (not water) according to the following reaction: $$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \quad K=2.2$$ For the following mixtures (a-d), will the concentration of $\mathrm{H}_{2} \mathrm{O}$ increase, decrease, or remain the same as equilibrium is established? a. $\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right]=0.22 M,\left[\mathrm{H}_{2} \mathrm{O}\right]=0.10 M$ $\quad\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]=0.010 M,\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=0.010 M$ b. $\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right]=0.22 M,\left[\mathrm{H}_{2} \mathrm{O}\right]=0.0020 M$ $\quad\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]=0.0020 M,\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=0.10 M$ c. $\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right]=0.88 M,\left[\mathrm{H}_{2} \mathrm{O}\right]=0.12 M$ $\quad\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]=0.044 M,\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=6.0 M$ d. $\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right]=4.4 M,\left[\mathrm{H}_{2} \mathrm{O}\right]=4.4 M$ $\quad\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]=0.88 M,\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=10.0 M$ e. What must the concentration of water be for a mixture with $\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right]=2.0 M,\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]=0.10 M,$ and \(\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=5.0 M\) to be at equilibrium? f. Why is water included in the equilibrium expression for this reaction?

Old-fashioned "smelling salts" consist of ammonium carbonate, (NH $_{4} )_{2} \mathrm{CO}_{3}$ . The reaction for the decomposition of ammonium carbonate $$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(s) \rightleftharpoons 2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)$$ is endothermic. Would the smell of ammonia increase or decrease as the temperature is increased?

At a particular temperature, \(K=3.75\) for the reaction $$\mathrm{SO}_{2}(g)+\mathrm{NO}_{2}(g) \rightleftharpoons \mathrm{SO}_{3}(g)+\mathrm{NO}(g)$$ If all four gases had initial concentrations of \(0.800 M,\) calculate the equilibrium concentrations of the gases.

Lexan is a plastic used to make compact discs, eyeglass lenses, and bullet- proof glass. One of the compounds used to make Lexan is phosgene \(\left(\mathrm{COCl}_{2}\right),\) an extremely poisonous gas. Phosgene decomposes by the reaction $$\mathrm{COCl}_{2}(g) \rightleftharpoons \mathrm{CO}(g)+\mathrm{Cl}_{2}(g)$$for which $K_{\mathrm{p}}=6.8 \times 10^{-9}\( at \)100^{\circ} \mathrm{C} .$ If pure phosgene at an initial pressure of 1.0 atm decomposes, calculate the equilibrium pressures of all species.

An equilibrium mixture contains 0.60 g solid carbon and the gases carbon dioxide and carbon monoxide at partial pressures of 2.60 atm and 2.89 atm, respectively. Calculate the value of \(K_{\mathrm{p}}\) for the reaction $\mathrm{C}(s)+\mathrm{CO}_{2}(g) \Longrightarrow 2 \mathrm{CO}(g)$

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free