At a particular temperature a \(2.00-\mathrm{L}\) flask at equilibrium contains
\(2.80 \times 10^{-4}\) mole of \(\mathrm{N}_{2}, 2.50 \times 10^{-5}\) mole of
\(\mathrm{O}_{2},\) and \(2.00 \times 10^{-2}\) mole of $\mathrm{N}_{2}
\mathrm{O}\( . Calculate \)K$ at this temperature for the reaction
$$2 \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{N}_{2}
\mathrm{O}(g)$$
If $\left[\mathrm{N}_{2}\right]=2.00 \times 10^{-4} M,\left[\mathrm{N}_{2}
\mathrm{O}\right]=0.200 M,\( and \)\left[\mathrm{O}_{2}\right]=\( \)0.00245 M,$
does this represent a system at equilibrium?