Consider the decomposition of the compound $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{3}$ as follows: $$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{3}(g) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6}(g)+3 \mathrm{CO}(g)$$ When a 5.63 -g sample of pure $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{3}(g)\( was sealed into an otherwise empty \)2.50-\mathrm{L}$ flask and heated to \(200 .^{\circ} \mathrm{C},\) the pres- sure in the flask gradually rose to 1.63 \(\mathrm{atm}\) and remained at that value. Calculate \(K\) for this reaction.

Short Answer

Expert verified
The equilibrium constant \(K\) for the given decomposition reaction of \(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{3}\) can be calculated by using the initial mass and volume of the system, the final pressure, and setting up an ICE table. Calculate initial moles, total moles at equilibrium, and changes in moles during the reaction to find equilibrium concentrations. Then, use these equilibrium concentrations to calculate the equilibrium constant \(K\).

Step by step solution

01

Find the initial moles

First, we need to find the initial moles of \(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{3}\) using the given mass and the molar mass of the compound. Molar mass of \(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{3} = 5\times 12.01 + 6\times 1.01 + 3\times 16.00 = 114.11 \ \text{g/mol}\). Initial moles \((n_i)\) of \(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{3} = \frac{5.63\ \text{g}}{114.11\ \text{g/mol}}\)
02

Setup the ICE table

Set up an ICE (initial, change, equilibrium) table to record the changes in moles of reactants and products during the reaction. Reaction: $$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{3}(g) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{6}(g)+3 \mathrm{CO}(g)$$ | | \(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{3}\) | \(\mathrm{C}_{2} \mathrm{H}_{6}\) | \(3\ \mathrm{CO}\) | |---------- |------------------------------------ |---------------------------- |-------------- | | Initial | \(n_i\) | 0 | 0 | | Change | \(-x\) | \(+x\) | \(+3x\) | | Equilibrium | \(n_i - x\) | \(x\) | \(3x\) |
03

Calculate final moles using the final pressure and ideal gas law

Using the final pressure \((P_f = 1.63\ \text{atm})\) and ideal gas law, we can find the total moles of gas at equilibrium and use it to calculate \(x\). Ideal Gas Law: \(PV=nRT\) Total moles of gas \((n_t)\) at equilibrium: $$n_t = \frac{PV}{RT} = \frac{(1.63\ \text{atm})(2.50\ \text{L})}{(0.0821\ \text{L.atm/mol.K})(293\ \text{K})}$$ As the total moles of gas at equilibrium are equal to the sum of moles of all the gases, we can write, $$n_t = n_{\text{C}_{5} \text{H}_{6} \text{O}_{3}} + n_{\text{C}_{2} \text{H}_{6}} + n_{\text{CO}} = (n_i - x) + x + 3x$$ Now we can substitute the known values and calculate \(x\).
04

Calculate the equilibrium concentrations

Once we have \(x\), we can find the equilibrium concentrations of \(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{3}\), \(\mathrm{C}_{2} \mathrm{H}_{6}\), and \(\mathrm{CO}\) using the equilibrium moles and the given volume of the flask. Equilibrium concentration (\(\textit{conc}\)) for each species: \([\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{3}]_{eq} = \frac{n_{\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{3}}}{V} = \frac{n_i - x}{2.50\ \text{L}}\) \([\mathrm{C}_{2} \mathrm{H}_{6}]_{eq} = \frac{n_{\mathrm{C}_{2} \mathrm{H}_{6}}}{V} = \frac{x}{2.50\ \text{L}}\) \([\mathrm{CO}]_{eq} = \frac{n_{\mathrm{CO}}}{V} = \frac{3x}{2.50\ \text{L}}\)
05

Calculate the equilibrium constant

Finally, we can calculate the equilibrium constant using the known equilibrium concentrations and the balanced chemical equation: $$K = \frac{[\mathrm{C}_{2} \mathrm{H}_{6}]_{eq} [\mathrm{CO}]_{eq}^3}{[\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{3}]_{eq}}$$ Now, substitute the values for the equilibrium concentrations and calculate the value of \(K\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

At \(25^{\circ} \mathrm{C}, K=0.090\) for the reaction $$\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{Cl}_{2} \mathrm{O}(g) \rightleftharpoons 2 \mathrm{HOCl}(g)$$ Calculate the concentrations of all species at equilibrium for each of the following cases. a. 1.0 \(\mathrm{g} \mathrm{H}_{2} \mathrm{O}\) and 2.0 $\mathrm{g} \mathrm{Cl}_{2} \mathrm{O}$ are mixed in a 1.0 -L flask. b. 1.0 mole of pure HOCl is placed in a 2.0 \(\mathrm{L}\) flask.

Ethyl acetate is synthesized in a nonreacting solvent (not water) according to the following reaction: $$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \quad K=2.2$$ For the following mixtures (a-d), will the concentration of $\mathrm{H}_{2} \mathrm{O}$ increase, decrease, or remain the same as equilibrium is established? a. $\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right]=0.22 M,\left[\mathrm{H}_{2} \mathrm{O}\right]=0.10 M$ $\quad\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]=0.010 M,\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=0.010 M$ b. $\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right]=0.22 M,\left[\mathrm{H}_{2} \mathrm{O}\right]=0.0020 M$ $\quad\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]=0.0020 M,\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=0.10 M$ c. $\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right]=0.88 M,\left[\mathrm{H}_{2} \mathrm{O}\right]=0.12 M$ $\quad\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]=0.044 M,\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=6.0 M$ d. $\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right]=4.4 M,\left[\mathrm{H}_{2} \mathrm{O}\right]=4.4 M$ $\quad\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]=0.88 M,\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=10.0 M$ e. What must the concentration of water be for a mixture with $\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right]=2.0 M,\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]=0.10 M,$ and \(\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=5.0 M\) to be at equilibrium? f. Why is water included in the equilibrium expression for this reaction?

Explain the difference between \(K, K_{\mathrm{p}},\) and \(Q\)

At high temperatures, elemental nitrogen and oxygen react with each other to form nitrogen monoxide: $$\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g)$$ Suppose the system is analyzed at a particular temperature, and the equilibrium concentrations are found to be \(\left[\mathrm{N}_{2}\right]=\) \(0.041 M,\left[\mathrm{O}_{2}\right]=0.0078 M,\) and $[\mathrm{NO}]=4.7 \times 10^{-4} M .\( Calculate the value of \)K$ for the reaction.

At a particular temperature, \(K=3.75\) for the reaction $$\mathrm{SO}_{2}(g)+\mathrm{NO}_{2}(g) \rightleftharpoons \mathrm{SO}_{3}(g)+\mathrm{NO}(g)$$ If all four gases had initial concentrations of \(0.800 M,\) calculate the equilibrium concentrations of the gases.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free