Given that the \(K_{\mathrm{a}}\) value for acetic acid is \(1.8 \times 10^{-5}\) and the \(K_{\mathrm{a}}\) value for hypochlorous acid is \(3.5 \times 10^{-8},\) which is the stronger base, \(\mathrm{OCl}^{-}\) or $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} ?$

Short Answer

Expert verified
Given that the \(K_\mathrm{a}\) values for acetic acid and hypochlorous acid are \(1.8 \times 10^{-5}\) and \(3.5 \times 10^{-8}\), respectively, we can calculate the \(K_\mathrm{b}\) values for their conjugate bases, \(\mathrm{OCl}^-\) and \(\mathrm{C}_{2}\mathrm{H}_{3} \mathrm{O}_{2}^-\), using the relationship \(K_\mathrm{a} \cdot K_\mathrm{b} = K_\mathrm{w}\). The calculated \(K_\mathrm{b}\) values are \(2.86 \times 10^{-7}\) for \(\mathrm{OCl}^-\) and \(5.56 \times 10^{-10}\) for \(\mathrm{C}_{2}\mathrm{H}_{3} \mathrm{O}_{2}^-\). Since the \(K_\mathrm{b}\) value of \(\mathrm{OCl}^-\) is larger than the \(K_\mathrm{b}\) value of \(\mathrm{C}_{2}\mathrm{H}_{3} \mathrm{O}_{2}^-\), \(\mathrm{OCl}^-\) is the stronger base.

Step by step solution

01

Calculate the Kb values of the conjugate bases of acetic acid and hypochlorous acid.

In order to determine the stronger base, we first need to calculate the Kb values for OCl- and C2H3O2-. We can do this using the relationship between Ka, Kb, and Kw: \(K_\mathrm{a} \cdot K_\mathrm{b} = K_\mathrm{w}\) where Ka is the acid dissociation constant, Kb is the base dissociation constant, and Kw is the ion product of water, which is equal to \(1.0 \times 10^{-14}\) at 25°C. For acetic acid: \(K_\mathrm{a}(\mathrm{C}_2 \mathrm{H}_4 \mathrm{O}_2) = 1.8 \times 10^{-5}\) So, \(K_\mathrm{b}(\mathrm{C}_2 \mathrm{H}_3 \mathrm{O}_2^-) = \frac{K_\mathrm{w}}{K_\mathrm{a}(\mathrm{C}_2 \mathrm{H}_4 \mathrm{O}_2)} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.56 \times 10^{-10}\) For hypochlorous acid: \(K_\mathrm{a}(\mathrm{H}\mathrm{O}\mathrm{Cl}) = 3.5 \times 10^{-8}\) So, \(K_\mathrm{b}(\mathrm{O}\mathrm{Cl}^-) = \frac{K_\mathrm{w}}{K_\mathrm{a}(\mathrm{H}\mathrm{O}\mathrm{Cl})} = \frac{1.0 \times 10^{-14}}{3.5 \times 10^{-8}} = 2.86 \times 10^{-7}\)
02

Compare the Kb values to determine the stronger base.

Now that we have the Kb values for both OCl− and C2H3O2−, we can compare them to determine which is the stronger base: \(K_\mathrm{b}(\mathrm{O}\mathrm{Cl}^-) = 2.86 \times 10^{-7}\) \(K_\mathrm{b}(\mathrm{C}_2 \mathrm{H}_3 \mathrm{O}_2^-) = 5.56 \times 10^{-10}\) Since the Kb value of OCl− is larger than the Kb value of C2H3O2−, OCl− is the stronger base.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calculate the concentration of an aqueous \(\mathrm{Sr}(\mathrm{OH})_{2}\) that has \(\mathrm{pH}=10.50\) .

The pH of a \(0.063-M\) solution of hypobromous acid (HOBr but usually written \(\mathrm{HBrO}\) ) is \(4.95 .\) Calculate \(K_{\mathrm{a}} .\)

a. The principal equilibrium in a solution of \(\mathrm{NaHCO}_{3}\) is $$ \mathrm{HCO}_{3}^{-}(a q)+\mathrm{HCO}_{3}^{-}(a q) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(a q)+\mathrm{CO}_{3}^{2-}(a q) $$ Calculate the value of the equilibrium constant for this reaction. b. At equilibrium, what is the relationship between $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]\( and \)\left[\mathrm{CO}_{3}^{2-}\right] ?$ c. Using the equilibrium $$ \mathrm{H}_{2} \mathrm{CO}_{3}(a q) \rightleftharpoons 2 \mathrm{H}^{+}(a q)+\mathrm{CO}_{3}^{2-}(a q) $$ derive an expression for the pH of the solution in terms of \(K_{\mathrm{a}_{1}}\) and \(K_{\mathrm{a}_{2}}\) using the result from part b. d. What is the pH of a solution of \(\mathrm{NaHCO}_{3} ?\)

Identify the Lewis acid and the Lewis base in each of the following reactions. a. $\mathrm{Fe}^{3+}(a q)+6 \mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}(a q)$ b. $\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CN}^{-}(a q) \Longrightarrow \mathrm{HCN}(a q)+\mathrm{OH}^{-}(a q)$ c. $\mathrm{HgI}_{2}(s)+2 \mathrm{I}^{-}(a q) \rightleftharpoons \mathrm{Hgl}_{4}^{2-}(a q)$

Monochloroacetic acid, \(\mathrm{HC}_{2} \mathrm{H}_{2} \mathrm{ClO}_{2},\) is a skin irritant that is used in "chemical peels" intended to remove the top layer of dead skin from the face and ultimately improve the complexion. The value of \(K_{\mathrm{a}}\) for monochloroacetic acid is \(1.35 \times 10^{-3}\) Calculate the pH of a \(0.10-M\) solution of monochloroacetic acid.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free