Chapter 14: Problem 152
Calculate the pH of an aqueous solution containing \(1.0 \times 10^{-2} M\) \(\mathrm{HCl}, 1.0 \times 10^{-2} \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4},\) and \(1.0 \times 10^{-2} \mathrm{M} \mathrm{HCN}\)
Chapter 14: Problem 152
Calculate the pH of an aqueous solution containing \(1.0 \times 10^{-2} M\) \(\mathrm{HCl}, 1.0 \times 10^{-2} \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4},\) and \(1.0 \times 10^{-2} \mathrm{M} \mathrm{HCN}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeRank the following 0.10\(M\) solutions in order of increasing \(\mathrm{pH.}\) a. HI, HF, NaF, NaI b. \(\mathrm{NH}_{4} \mathrm{Br}, \mathrm{HBr}, \mathrm{KBr}, \mathrm{NH}_{3}\) c. $C_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{NO}_{3}, \mathrm{NaNO}_{3}, \mathrm{NaOH}, \mathrm{HOC}_{6} \mathrm{H}_{5}, \mathrm{KOC}_{6} \mathrm{H}_{5}$ \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}, \mathrm{HNO}_{3}\)
Saccharin, a sugar substitute, has the formula $\mathrm{HC}_{7} \mathrm{H}_{4} \mathrm{NSO}_{3}$ and is a weak acid with \(K_{\mathrm{a}}=2.0 \times 10^{-12} .\) If 100.0 \(\mathrm{g}\) of saccharin is dissolved in enough water to make 340 \(\mathrm{mL}\) of solution, calculate the \(\mathrm{pH}\) of the resulting solution.
Calculate the \(\mathrm{pH}\) and \(\left[\mathrm{S}^{2-}\right]\) in a $0.10-M \mathrm{H}_{2} \mathrm{S}\( solution. Assume \)K_{\mathrm{a}_{1}}=1.0 \times 10^{-7} ; K_{\mathrm{a}_{2}}=1.0 \times 10^{-19}$
For the following, mix equal volumes of one solution from Group I with one solution from Group II to achieve the indicated pH. Calculate the pH of each solution. $$\begin{aligned} \text { Group I: } & 0.20 M \mathrm{NH}_{4} \mathrm{Cl}, 0.20 \mathrm{MCl}, 0.20 M \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{Cl} \\ & 0.20 M\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NHCl} \end{aligned}$$ $$\begin{aligned} \text { Group II: } 0.20 \quad M\quad \mathrm{KOI}, 0.20 \quad\mathrm{M} \quad\mathrm{NaCN}, 0.20\quad \mathrm{M}\quad \mathrm{KOCl}, 0.20 \\ \mathrm{M}\quad \mathrm{NaNO}_{2} \end{aligned}$$ a. the solution with the lowest pH b. the solution with the highest pH c. the solution with the pH closest to 7.00
Given that the \(K_{\mathrm{a}}\) value for acetic acid is \(1.8 \times 10^{-5}\) and the \(K_{\mathrm{a}}\) value for hypochlorous acid is \(3.5 \times 10^{-8},\) which is the stronger base, \(\mathrm{OCl}^{-}\) or $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} ?$
What do you think about this solution?
We value your feedback to improve our textbook solutions.