Chapter 14: Problem 157
Calculate the mass of \(\mathrm{HONH}_{2}\) required to dissolve in enough water to make 250.0 \(\mathrm{mL}\) of solution having a pH of 10.00\(\left(K_{\mathrm{b}}\right.\) \(=1.1 \times 10^{-8} )\)
Chapter 14: Problem 157
Calculate the mass of \(\mathrm{HONH}_{2}\) required to dissolve in enough water to make 250.0 \(\mathrm{mL}\) of solution having a pH of 10.00\(\left(K_{\mathrm{b}}\right.\) \(=1.1 \times 10^{-8} )\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFor the following, mix equal volumes of one solution from Group I with one solution from Group II to achieve the indicated pH. Calculate the pH of each solution. $$\begin{aligned} \text { Group I: } & 0.20 M \mathrm{NH}_{4} \mathrm{Cl}, 0.20 \mathrm{MCl}, 0.20 M \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{Cl} \\ & 0.20 M\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NHCl} \end{aligned}$$ $$\begin{aligned} \text { Group II: } 0.20 \quad M\quad \mathrm{KOI}, 0.20 \quad\mathrm{M} \quad\mathrm{NaCN}, 0.20\quad \mathrm{M}\quad \mathrm{KOCl}, 0.20 \\ \mathrm{M}\quad \mathrm{NaNO}_{2} \end{aligned}$$ a. the solution with the lowest pH b. the solution with the highest pH c. the solution with the pH closest to 7.00
Aluminum hydroxide is an amphoteric substance. It can act as either a Bronsted-Lowry base or a Lewis acid. Write a reaction showing All(OH) acting as a base toward \(\mathrm{H}^{+}\) and as an acid toward OH".
Using your results from Exercise \(133,\) place the species in each of the following groups in order of increasing base strength. a. \(\mathrm{OH}^{-}, \mathrm{SH}^{-}, \mathrm{SeH}^{-}\) b. \(\mathrm{NH}_{3}, \mathrm{PH}_{3}\) c. \(\mathrm{NH}_{3}, \mathrm{HONH}_{2}\)
Place the species in each of the following groups in order of increasing acid strength. a. $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{S}, \mathrm{H}_{2} \mathrm{Se}\( (bond energies: \)\mathrm{H}-\mathrm{O}, 467 \mathrm{kJ} / \mathrm{mol}$ $\mathrm{H}-\mathrm{S}, 363 \mathrm{kJ} / \mathrm{mol} ; \mathrm{H}-\mathrm{Se}, 276 \mathrm{kJ} / \mathrm{mol} )$ b. $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{FCH}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{F}_{2} \mathrm{CHCO}_{2} \mathrm{H}, \mathrm{F}_{3} \mathrm{CCO}_{2} \mathrm{H}$ c. \(\mathrm{NH}_{4}^{+}, \mathrm{HONH}_{3}^{+}\) d. \(\mathrm{NH}_{4}^{+}, \mathrm{PH}_{4}^{+}\) (bond energies: $\mathrm{N}-\mathrm{H}, 391 \mathrm{kJ} / \mathrm{mol} ; \mathrm{P}-\mathrm{H},$ 322 \(\mathrm{kJ} / \mathrm{mol} )\) Give reasons for the orders you chose.
Calculate the \(\mathrm{pH}\) of a $0.20-M \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}\( solution \)\left(K_{\mathrm{b}}=\right.\( \)5.6 \times 10^{-4} )$
What do you think about this solution?
We value your feedback to improve our textbook solutions.