Chapter 14: Problem 78
A \(1.0 \times 10^{-2}-M\) solution of cyanic acid (HOCN) is 17\(\%\) dissociated. Calculate \(K_{\mathrm{a}}\) for cyanic acid.
Chapter 14: Problem 78
A \(1.0 \times 10^{-2}-M\) solution of cyanic acid (HOCN) is 17\(\%\) dissociated. Calculate \(K_{\mathrm{a}}\) for cyanic acid.
All the tools & learning materials you need for study success - in one app.
Get started for freeAn acid \(\mathrm{HX}\) is 25\(\%\) dissociated in water. If the equilibrium concentration of \(\mathrm{HX}\) is \(0.30 \mathrm{M},\) calculate the \(K_{\mathrm{a}}\) value for \(\mathrm{HX}\) .
A typical sample of vinegar has a pH of \(3.0 .\) Assuming that vinegar is only an aqueous solution of acetic acid \(\left(K_{\mathrm{a}}=1.8 \times\right.\) \(10^{-5}\) ), calculate the concentration of acetic acid in vinegar.
Would you expect \(\mathrm{Fe}^{3+}\) or \(\mathrm{Fe}^{2+}\) to be the stronger Lewis acid? Explain.
Calculate the pH of the following solutions: a. 1.2\(M \mathrm{CaBr}_{2}\) b. 0.84$M \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{NO}_{3}\left(K_{\mathrm{b}} \text { for } \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}=3.8 \times 10^{-10}\right)$ c. 0.57$M \mathrm{KC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\left(K_{\mathrm{a}} \text { for } \mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}=6.4 \times 10^{-5}\right)$
Are solutions of the following salts acidic, basic, or neutral? For those that are not neutral, write balanced equations for the reactions causing the solution to be acidic or basic. The relevant \(K_{\mathrm{a}}\) and \(K_{\mathrm{b}}\) values are found in Tables 14.2 and \(14.3 .\) $\begin{array}{ll}{\text { a. } \operatorname{Sr}\left(\mathrm{NO}_{3}\right)_{2}} & {\text { d. } \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{ClO}_{2}} \\ {\text { b. } \mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}} & {\text { e. } \mathrm{NH}_{4} \mathrm{F}} \\ {\text { c. } \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{O} \mathrm{l}} & {\text { f. } \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{CN}}\end{array}$
What do you think about this solution?
We value your feedback to improve our textbook solutions.