Chapter 14: Problem 94
Calculate the concentration of an aqueous \(\mathrm{Sr}(\mathrm{OH})_{2}\) that has \(\mathrm{pH}=10.50\) .
Chapter 14: Problem 94
Calculate the concentration of an aqueous \(\mathrm{Sr}(\mathrm{OH})_{2}\) that has \(\mathrm{pH}=10.50\) .
All the tools & learning materials you need for study success - in one app.
Get started for freeAre solutions of the following salts acidic, basic, or neutral? For those that are not neutral, write balanced equations for the reactions causing the solution to be acidic or basic. The relevant \(K_{\mathrm{a}}\) and \(K_{\mathrm{b}}\) values are found in Tables 14.2 and \(14.3 .\) $\begin{array}{ll}{\text { a. } \operatorname{Sr}\left(\mathrm{NO}_{3}\right)_{2}} & {\text { d. } \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{ClO}_{2}} \\ {\text { b. } \mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}} & {\text { e. } \mathrm{NH}_{4} \mathrm{F}} \\ {\text { c. } \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{O} \mathrm{l}} & {\text { f. } \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{CN}}\end{array}$
Acrylic acid \(\left(\mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{H}\right)\) is a precursor for many important plastics. \(K_{\mathrm{a}}\) for acrylic acid is \(5.6 \times 10^{-5} .\) a. Calculate the pH of a \(0.10-M\) solution of acrylic acid. b. Calculate the percent dissociation of a \(0.10-M\) solution of acrylic acid. c. calculate the pH of a \(0.050-M\) solution of sodium acrylate \(\left(\mathrm{NaC}_{3} \mathrm{H}_{3} \mathrm{O}_{2}\right)\)
An aqueous solution contains a mixture of 0.0500\(M \mathrm{HCOOH}\) \(\left(K_{\mathrm{a}}=1.77 \times 10^{-4}\right)\) and 0.150$M \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\left(K_{\mathrm{a}}=\right.\( \)1.34 \times 10^{-5} ) .\( Calculate the \)\mathrm{pH}$ of this solution. Because both acids are of comparable strength, the \(\mathrm{H}^{+}\) contribution from both acids must be considered.
Calculate the pH of a \(0.010-M\) solution of iodic acid (HIO $_{3}, K_{\mathrm{a}}\( \)=0.17 )$
A \(0.20-M\) sodium chlorobenzoate $\left(\mathrm{NaC}_{7} \mathrm{H}_{4} \mathrm{ClO}_{2}\right)\( solution has \)\mathrm{a} \mathrm{pH}\( of \)8.65 .$ Calculate the \(\mathrm{pH}\) of a \(0.20-M\) chlorobenzoic acid \(\left(\mathrm{HC}_{7} \mathrm{H}_{4} \mathrm{ClO}_{2}\right)\) solution.
What do you think about this solution?
We value your feedback to improve our textbook solutions.