For the reaction of hydrazine \(\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)\) in water, $$ \mathrm{H}_{2} \mathrm{NNH}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{2} \mathrm{NNH}_{3}^{+}(a q)+\mathrm{OH}^{-}(a q) $$ \(K_{\mathrm{b}}\) is \(3.0 \times 10^{-6} .\) Calculate the concentrations of all species and the pH of a \(2.0-M\) solution of hydrazine in water.

Short Answer

Expert verified
The concentrations of all species in the 2.0 M hydrazine solution are: - \([\mathrm{H}_{2}\mathrm{NNH}_{2}] \approx 2.0\ M\) - \([\mathrm{H}_{2}\mathrm{NNH}_{3}^{+}] \approx 2.45 \times 10^{-3}\ M\) - \([\mathrm{OH}^{-}] \approx 2.45 \times 10^{-3}\ M\) The pH of the solution is approximately 11.39.

Step by step solution

01

Write the equation for the dissociation of hydrazine in water

$$\mathrm{H}_{2} \mathrm{NNH}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{2} \mathrm{NNH}_{3}^{+}(a q)+\mathrm{OH}^{-}(a q) $$
02

Set up an ICE table

An ICE table helps us keep track of the changes in the concentrations of the species in the reaction. The table should look like this: | | \(\mathrm{H}_{2} \mathrm{NNH}_{2}(a q)\) | \(\mathrm{H}_{2} \mathrm{NNH}_{3}^{+}(a q)\) | \(\mathrm{OH}^{-}(a q)\) | |-------|-----------------------------------|-------------------------------------|---------------------| | Initial | 2.0 M | 0 M | 0 M | | Change | -x | +x | +x | | Equilibrium | 2.0 M - x | x | x |
03

Write the expression for \(K_\mathrm{b}\)

The expression for \(K_\mathrm{b}\) is given by: \(K_\mathrm{b} = \frac{[\mathrm{H}_{2}\mathrm{NNH}_{3}^{+}][\mathrm{OH}^{-}]}{[\mathrm{H}_{2}\mathrm{NNH}_{2}]}\)
04

Solve for the equilibrium concentrations using the ICE table and \(K_\mathrm{b}\) expression

Using the equilibrium concentrations from the ICE table, we substitute them into the \(K_\mathrm{b}\) expression: \(3.0 \times 10^{-6} = \frac{x(x)}{2.0 - x}\) Since the value of \(K_\mathrm{b}\) is very small, it's reasonable to assume that the change in concentration (x) is very small compared to 2.0 M, and can be ignored: \(3.0 \times 10^{-6} ≈ \frac{x^2}{2.0}\) Now, we can solve for x: \(x^2 = 2.0 \times 3.0 \times 10^{-6}\) \(x = \sqrt{6.0 \times 10^{-6}}\) \(x \approx 2.45 \times 10^{-3}\) Now we know the equilibrium concentrations: \([\mathrm{H}_{2}\mathrm{NNH}_{2}] = 2.0 - x \approx 2.0\M\) \([\mathrm{H}_{2}\mathrm{NNH}_{3}^{+}] = x \approx 2.45 \times 10^{-3}\ M\) \([\mathrm{OH}^{-}] = x \approx 2.45 \times 10^{-3}\ M\)
05

Calculate the pH using the calculated \(\mathrm{OH}^{-}\) concentration

To find the pH, first calculate the pOH using the \(\mathrm{OH}^{-}\) concentration: \(pOH = -\log{[\mathrm{OH}^{-}]} = -\log{(2.45 \times 10^{-3})} \approx 2.61\) Next, use the relationship between the pH and pOH: \(pH + pOH = 14\) Finally, calculate the pH: \(pH = 14 - pOH \approx 14 - 2.61 \approx 11.39\) The concentrations of all species in the solution are: - \([\mathrm{H}_{2}\mathrm{NNH}_{2}] \approx 2.0\ M\) - \([\mathrm{H}_{2}\mathrm{NNH}_{3}^{+}] \approx 2.45 \times 10^{-3}\ M\) - \([\mathrm{OH}^{-}] \approx 2.45 \times 10^{-3}\ M\) And the pH of the solution is approximately 11.39.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Determine the pH of a \(0.50-M\) solution of \(\mathrm{NH}_{4} \mathrm{OCl.}\) . See Exercise \(181 .\) )

Classify each of the following as a strong acid, weak acid, strong base, or weak base in aqueous solution. a. \(\mathrm{HNO}_{2}\) b. HNO \(_{3}\) c. \(\mathrm{CH}_{3} \mathrm{NH}_{2}\) d. \(\mathrm{NaOH}\) e. \(\mathrm{NH}_{3}\) f. \(\mathrm{HF}\) g. \(\mathrm{HC}-\mathrm{OH}\) h. \(\mathrm{Ca}(\mathrm{OH})_{2}\) i. \(\mathrm{H}_{2} \mathrm{SO}_{4}\)

When determining the pH of a weak acid solution, sometimes the 5\(\%\) rule can be applied to simplify the math. At what \(K_{\mathrm{a}}\) values will a \(1.0-M\) solution of a weak acid follow the 5\(\%\) rule?

Arsenic acid \(\left(\mathrm{H}_{3} \mathrm{AsO}_{4}\right)\) is a triprotic acid with \(K_{\mathrm{a}_{1}}=5.5 \times 10^{-3}\) $K_{\mathrm{a}_{2}}=1.7 \times 10^{-7},\( and \)K_{\mathrm{a}_{3}}=5.1 \times 10^{-12}$ . Calculate \(\left[\mathrm{H}^{+}\right]\) $\left[\mathrm{OH}^{-}\right],\left[\mathrm{H}_{3} \mathrm{AsO}_{4}\right],\left[\mathrm{H}_{2} \mathrm{AsO}_{4}^{-}\right],\left[\mathrm{HAsO}_{4}^{2-}\right],$ and \(\left[\mathrm{AsO}_{4}^{3-]}\right]\) in a \(0.20-M\) arsenic acid solution.

Place the species in each of the following groups in order of increasing acid strength. a. $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{S}, \mathrm{H}_{2} \mathrm{Se}\( (bond energies: \)\mathrm{H}-\mathrm{O}, 467 \mathrm{kJ} / \mathrm{mol}$ $\mathrm{H}-\mathrm{S}, 363 \mathrm{kJ} / \mathrm{mol} ; \mathrm{H}-\mathrm{Se}, 276 \mathrm{kJ} / \mathrm{mol} )$ b. $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{FCH}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{F}_{2} \mathrm{CHCO}_{2} \mathrm{H}, \mathrm{F}_{3} \mathrm{CCO}_{2} \mathrm{H}$ c. \(\mathrm{NH}_{4}^{+}, \mathrm{HONH}_{3}^{+}\) d. \(\mathrm{NH}_{4}^{+}, \mathrm{PH}_{4}^{+}\) (bond energies: $\mathrm{N}-\mathrm{H}, 391 \mathrm{kJ} / \mathrm{mol} ; \mathrm{P}-\mathrm{H},$ 322 \(\mathrm{kJ} / \mathrm{mol} )\) Give reasons for the orders you chose.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free