Calculate the ph of each of the following solutions. $$ \begin{array}{l}{\text { a. } 0.100 M \text { propanoic acid }\left(\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}, K_{2}=1.3 \times 10^{-5}\right)} \\ {\text { b. } 0.100 M \text { sodium propanoate }\left(\mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right)} \\ {\text { c. pure } \mathrm{H}_{2} \mathrm{O}}\end{array} $$ $$ \begin{array}{l}{\text { d. a mixture containing } 0.100 M \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2} \text { and } 0.100 \mathrm{M}} \\\ {\mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}}\end{array} $$

Short Answer

Expert verified
The pH values for each solution are: a. Propanoic acid: pH ≈ 2.94 b. Sodium propanoate: pH ≈ 8.44 c. Pure water: pH = 7.00 d. Mixture of propanoic acid and sodium propanoate: pH ≈ 4.89

Step by step solution

01

Calculate the pH of the propanoic acid solution

Given a solution of 0.100 M propanoic acid (HC3H5O2) and its dissociation constant, Ka = 1.3 × 10^(-5). This is a weak acid, and we can set up an equilibrium expression to find its ionization degree: \[HC_3H_5O_2 \rightleftharpoons H^+ + C_3H_5O_2^-\] To find the ionization degree (x), we can write the expression for Ka: \[Ka = \frac{[H^+][C_3H_5O_2^-]}{[HC_3H_5O_2]}\] Since the initial concentration of propanoic acid is 0.100 M and assuming the ionization degree is small, we can write: \[Ka = \frac{x^2}{0.100 - x}\] Now, we'll solve for x, which is also the [H+] concentration: \[x^2 = Ka(0.100 - x) = 1.3 \times 10^{-5}(0.100)\] \[x = \sqrt{1.3 \times 10^{-6}}\] Since x is very small compared to 0.100, x ≈ 1.14 × 10^(-3) M Now we can calculate the pH: \[pH = -\log[H^+]\] \[pH = -\log(1.14 \times 10^{-3}) ≈ 2.94\]
02

Calculate the pH of the sodium propanoate solution

Since sodium propanoate (NaC3H5O2) completely dissociates in water, the solution will be 0.100 M in C3H5O2^- ions. We can use the Kb value to determine the pH: \[Kb = \frac{Kw}{Ka}\] Where Kw is the ion product of water (1.0 × 10^(-14)). \[Kb = \frac{1.0 \times 10^{-14}}{1.3 \times 10^{-5}} = 7.69 \times 10^{-10}\] Now, we can write the equilibrium expression of sodium propanoate's conjugate base (C3H5O2^-): \[C_3H_5O_2^- + H_2O \rightleftharpoons HC_3H_5O_2 + OH^-\] Using Kb, we can write the ionization expression as: \[Kb = \frac{[HC_3H_5O_2][OH^-]}{[C_3H_5O_2^-]}\] We have the initial concentration of C3H5O2^- (0.100 M), and we'll assume that the hydroxide concentration is x: \[Kb = \frac{x^2}{0.100 - x} = 7.69 \times 10^{-10}\] \[x = \sqrt{7.69 \times 10^{-11}} ≈ 2.77 \times 10^{-6}\] Now, we can calculate the pOH: \[pOH = -\log[OH^-]\] \[pOH = -\log(2.77 \times 10^{-6}) ≈ 5.56\] Finally, we can find the pH: \[pH = 14 - pOH = 14 - 5.56 ≈ 8.44\]
03

Calculate the pH of pure water

For pure water, the concentration of H+ and OH- ions is equal and can be obtained using Kw: \[Kw = [H^+][OH^-]\] \[1.0 \times 10^{-14} = [H^+][H^+]\] \[H^+ = \sqrt{1.0 \times 10^{-14}} = 1.0 \times 10^{-7}\] The pH of pure water is: \[pH = -\log[H^+] = -\log(1.0 \times 10^{-7}) = 7\]
04

Calculate the pH of the mixture containing propanoic acid and sodium propanoate

For this step, we can use the Henderson-Hasselbalch equation: \[pH = pKa + \log \frac{[A^-]}{[HA]}\] \[pH = -\log(1.3 \times 10^{-5}) + \log \frac{0.100}{0.100}\] \[pH = 4.89 + \log(1) = 4.89\] In conclusion, the pH values for each solution are: a. Propanoic acid: pH = 2.94 b. Sodium propanoate: pH = 8.44 c. Pure water: pH = 7.00 d. Mixture of propanoic acid and sodium propanoate: pH = 4.89

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a buffered solution containing $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}\( and \)\mathrm{CH}_{3} \mathrm{NH}_{2}$ . Which of the following statements concerning this solution is(are) true? $\left(K_{\mathrm{a}} \text { for } \mathrm{CH}_{3} \mathrm{NH}_{3}+=2.3 \times 10^{-11}\right)$ a. A solution consisting of 0.10$M \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}\( and 0.10 \)\mathrm{M}\( \)\mathrm{CH}_{3} \mathrm{NH}_{2}$ would have a greater buffering capacity than one containing 1.0 \(\mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}\) and 1.0 \(\mathrm{M} \mathrm{CH}_{3} \mathrm{NH}_{2}\) b. If $\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]>\left[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right],\( then the \)\mathrm{pH}$ is larger than the \(\mathrm{p} K_{\mathrm{a}}\) value. c. Adding more \(\left[\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Cl}\right]\) to the initial buffer solution will decrease the pH. d. If $\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]<\left[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right],\( then \)\mathrm{pH}<3.36$ e. If $\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]=\left[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right],\( then \)\mathrm{pH}=10.64$

Consider a buffer solution where [weak acid] \(>\) [conjugate base]. How is the pH of the solution related to the \(\mathrm{p} K_{\mathrm{a}}\) value of the weak acid? If [conjugate base \(]>[\text { weak acid }]\) , how is pH related to \(\mathrm{p} K_{\mathrm{a}} ?\)

A buffer is prepared by dissolving HONH_ and $\mathrm{HONH}_{3} \mathrm{NO}_{3}$ in some water. Write equations to show how this buffer neutralizes added \(\mathrm{H}^{+}\) and \(\mathrm{OH}^{-}\)

Repeat the procedure in Exercise \(67,\) but for the titration of 25.0 \(\mathrm{mL}\) of 0.100\(M\) pyridine with 0.100\(M\) hydrochloric acid \(\left(K_{\mathrm{b}} \text { for pyridine is } 1.7 \times 10^{-9}\right) .\) Do not calculate the points at 24.9 and 25.1 \(\mathrm{mL}\)

Calculate the \(\mathrm{pH}\) of a solution that is 1.00 \(\mathrm{M}\) HNO, and 1.00 \(\mathrm{M} \mathrm{NaNO}_{2}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free