The copper(l) ion forms a complex ion with \(\mathrm{CN}^{-}\) according to the following equation: $$\mathrm{Cu}^{+}(a q)+3 \mathrm{CN}^{-}(a q) \rightleftharpoons \mathrm{Cu}(\mathrm{CN})_{3}^{2-}(a q) \quad K=1.0 \times 10^{11}$$ a. Calculate the solubility of $\mathrm{CuBr}(s)\left(K_{\mathrm{sp}}=1.0 \times 10^{-5}\right)\( in \)1.0 \mathrm{L}\( of \)1.0 \mathrm{M} \mathrm{NaCN}$ . b. Calculate the concentration of \(\mathrm{Br}^{-}\) at equilibrium. c. Calculate the concentration of \(\mathrm{CN}^{-}\) at equilibrium.

Short Answer

Expert verified
a. The solubility of CuBr in 1.0 L of 1.0 M NaCN is approximately \(5.63 \times 10^{-26}\ \mathrm{mol}\). b. The concentration of Br- ions at equilibrium is approximately \(5.63 \times 10^{-26}\ \mathrm{M}\). c. The concentration of CN- ions at equilibrium is approximately \(0.9997\ \mathrm{M}\).

Step by step solution

01

Set up the equations

We are given the following equilibrium expressions: $$a. \ \mathrm{CuBr}(s) \rightleftharpoons \mathrm{Cu}^{+} (aq) + \mathrm{Br}^{-}(aq) \quad K_{sp} = 1.0 \times 10^{-5}$$ $$b. \ \mathrm{Cu}^{+}(a q)+3 \mathrm{CN}^{-}(a q) \rightleftharpoons \mathrm{Cu}(\mathrm{CN})_{3}^{2-}(a q) \quad K=1.0 \times 10^{11}$$ We need to find the solubility of CuBr in 1.0 L of 1.0 M NaCN. Let the solubility of CuBr in 1.0 L of NaCN be 'x' moles. Thus, at equilibrium, we have: - [Cu+] = x moles - [Br-] = x moles - [CN-] = (1.0 M - 3x) moles since 3 moles of CN- react with 1 mole of Cu+.
02

Use the given equilibrium constants and expressions

Using the given equilibrium constants, we have the following equilibrium expressions: $$a. \ K_{sp} = [\mathrm{Cu}^{+}][\mathrm{Br}^{-}]$$ $$b. \ K = \frac{[\mathrm{Cu}(\mathrm{CN})_{3}^{2-}]}{[\mathrm{Cu}^{+}][\mathrm{CN}^{-}]^{3}}$$ For the \(K_{sp}\) expression, we know that: $$1.0 \times 10^{-5} = (x)(x)$$ $$x = \sqrt{1.0 \times 10^{-5}} = 1.0 \times 10^{-2.5}$$ Now, for the K expression, we have: $$1.0 \times 10^{11} = \frac{[\mathrm{Cu}(\mathrm{CN})_{3}^{2-}]}{[(1.0 \times 10^{-2.5})(1.0 - 3(1.0 \times 10^{-2.5}))]^3}$$ We can substitute [\(\mathrm{Cu}(\mathrm{CN})_{3}^{2-}\)] as 'x' in the equation above: $$1.0 \times 10^{11} = \frac{x}{[(1.0 \times 10^{-2.5})(1.0 - 3(1.0 \times 10^{-2.5}))]^3}$$
03

Solve for the solubility

Re-arrange the equation and solve for x, which represents the solubility of CuBr: $$x = 1.0 \times 10^{11} [(1.0 \times 10^{-2.5})(1.0 - 3(1.0 \times 10^{-2.5}))]^3$$ $$x \approx 5.63 \times 10^{-26}$$ a. The solubility of CuBr in 1.0 L of 1.0 M NaCN is approximately \(5.63 \times 10^{-26}\ \mathrm{mol}\).
04

Calculate the concentration of Br- ions at equilibrium

As we calculated the solubility 'x' of CuBr in 1.0 L of 1.0 M NaCN, the concentration of Br- ions at equilibrium will be the same: b. The concentration of Br- ions at equilibrium is approximately \(5.63 \times 10^{-26}\ \mathrm{M}\).
05

Calculate the concentration of CN- ions at equilibrium

Since 3 moles of CN- react with 1 mole of Cu+ as per the equation, the change in the concentration of CN- ions will be: Decrease in CN- ions = Moles of Cu+ reacted x 3 = (1.0 x 10^{-2.5}) x 3 The initial concentration of CN- ions is given as 1.0 M, so the final concentration of CN- ions at equilibrium will be: Final concentration of CN- ions = Initial concentration - Decrease in concentration = 1.0 - (1.0 x 10^{-2.5} x 3) c. The concentration of CN- ions at equilibrium is approximately \(0.9997\ \mathrm{M}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A solution contains 0.018 mole each of \(\mathrm{I}^{-}, \mathrm{Br}^{-},\) and \(\mathrm{Cl}^{-}.\) When the solution is mixed with \(200 . \mathrm{mL}\) of \(0.24 M\) \(\mathrm{AgNO}_{3}\) what mass of \(\mathrm{AgCl}(s)\) precipitates out, and what is \(\left[\mathrm{Ag}^{+}\right] ?\) Assume no volume change. $$\mathrm{AgI} : K_{\mathrm{sp}}=1.5 \times 10^{-16}$$ $$\operatorname{AgBr} ; K_{\mathrm{sp}}=5,0 \times 10^{-13}$$ $$\mathrm{AgCl} : K_{\mathrm{sp}}=1.6 \times 10^{-10}$$

Calculate the equilibrium concentrations of $\mathrm{NH}_{3}, \mathrm{Cu}^{2+}\( \)\mathrm{Cu}\left(\mathrm{NH}_{3}\right)^{2+}, \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}^{2+}, \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{3}^{2+},$ and \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\) in a solution prepared by mixing \(500.0 \mathrm{mL}\) of \(3.00M\) \(\mathrm{NH}_{3}\) with $500.0 \mathrm{mL}\( of \)2.00 \times 10^{-3} \mathrm{M} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ . The step wise equilibria are $$\mathrm{Cu}^{2+}(a q)+\mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{CuNH}_{3}^{2+}(a q) \quad K_{1}=1.86 \times 10^{4}$$ $$\mathrm{CuNH}_{3}^{2+}(a q)+\mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}^{2+}(a q) \quad K_{2}=3.88 \times 10^{3}$$ $$\mathrm{Cu}\left(\mathrm{NH}_{2}\right)_{2}^{2+}(a q)+\mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{2}\right)_{3}^{2+}(a q) \quad K_{3}=1.00 \times 10^{3}$$ $$\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{3}^{2+}(a q)+\mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q) \quad K_{4}=1.55 \times 10^{2}$$

The concentration of \(\mathrm{Ag}^{+}\) in a solution saturated with \(\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(s)\) is $2.2 \times 10^{-4} \mathrm{M} .\( Calculate \)K_{\mathrm{sp}}\( for \)\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}.$

The \(K_{\mathrm{sp}}\) for silver sulfate $\left(\mathrm{Ag}_{2} \mathrm{SO}_{4}\right)\( is \)1.2 \times 10^{-5} .$ Calculate the solubility of silver sulfate in each of the following. a. water b. \(0.10M\) \(\mathrm{AgNO}_{3}\) c. \(0.20M\) \(\mathrm{K}_{2} \mathrm{SO}_{4}\)

Calculate the concentration of \(\mathrm{Pb}^{2+}\) in each of the following. a. a saturated solution of $\mathrm{Pb}(\mathrm{OH})_{2}, K_{\mathrm{sp}}=1.2 \times 10^{-15}$ b. a saturated solution of \(\mathrm{Pb}(\mathrm{OH})_{2}\) buffered at \(\mathrm{pH}=13.00\) c. Ethylenediaminetetraacetate \(\left(\mathrm{EDTA}^{4-}\right)\) is used as a complexing agent in chemical analysis and has the following structure: Solutions of \(\mathrm{ED} \mathrm{TA}^{4-}\) are used to treat heavy metal poisoning by removing the heavy metal in the form of a soluble complex ion. The reaction of \(\mathrm{EDTA}^{4-}\) with \(\mathrm{Pb}^{2+} \mathrm{is}\) $$\mathrm{Pb}^{2+}(a q)+\mathrm{EDTA}^{4-}(a q) \rightleftharpoons \mathrm{PbEDTA}^{2-}(a q) \quad K=1.1 \times 10^{18}$$ Consider a solution with 0.010 mole of \(\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\) added to 1.0 \(\mathrm{L}\) of an aqueous solution buffered at \(\mathrm{pH}=13.00\) and containing 0.050 \(\mathrm{M}\) Na_thion. Does \(\mathrm{Pb}(\mathrm{OH})_{2}\) precipitate from this solution?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free