Calculate the solubility of each of the following compounds in moles per liter. Ignore any acid–base properties. a. \(P b I_{2}, K_{s p}=1.4 \times 10^{-8}\) b. \(\operatorname{CdCO}_{3}, K_{s p}=5.2 \times 10^{-12}\) c. $\operatorname{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}, K_{s p}=1 \times 10^{-31}$

Short Answer

Expert verified
The solubility of the compounds are as follows: a. \(PbI_{2}\): \(7.1 \times 10^{-4}\) M b. \(CdCO_{3}\): \(2.3 \times 10^{-6}\) M c. \(Sr_3(PO_4)_2\): \(8.9 \times 10^{-11}\) M

Step by step solution

01

Write the dissolution equation for each compound

. For each of the three compounds, we will write a balanced chemical equation representing its dissolution in water. a. \(PbI_{2}(s) \rightleftharpoons Pb^{2+}(aq) + 2I^{-}(aq)\) b. \(CdCO_{3}(s) \rightleftharpoons Cd^{2+}(aq) + CO_{3}^{2-}(aq)\) c. \(Sr_3(PO_4)_2(s) \rightleftharpoons 3Sr^{2+}(aq) + 2PO_{4}^{3-}(aq)\)
02

Express the solubility in terms of variables

: For each compound, we will express the concentration of ions in terms of the solubility (S). a. \([Pb^{2+}] = S\) and \([I^-] = 2S\) b. \([Cd^{2+}] = S\) and \([CO_{3}^{2-}] = S\) c. \([Sr^{2+}] = 3S\) and \([PO_{4}^{3-}] = 2S\)
03

Write the \(K_{sp}\) expression for each compound

: Using the solubility variables from Step 2, write the \(K_{sp}\) expressions for each of the compounds: a. \(K_{sp} = [Pb^{2+}][I^-]^2 = S(2S)^2\) b. \(K_{sp} = [Cd^{2+}][CO_{3}^{2-}] = S^2\) c. \(K_{sp} = [Sr^{2+}]^3[PO_{4}^{3-}]^2 = (3S)^3(2S)^2\)
04

Solve for solubility (S) in each case using the given \(K_{sp}\) values

: Using the given \(K_{sp}\) values, solve for S: a. \(1.4 \times 10^{-8} = S(2S)^2 \Rightarrow S = 7.1 \times 10^{-4}\,\text{M}\) b. \(5.2 \times 10^{-12} = S^2 \Rightarrow S = 2.3 \times 10^{-6}\,\text{M}\) c. \(1 \times 10^{-31} = (3S)^3(2S)^2 \Rightarrow S = 8.9 \times 10^{-11}\,\text{M}\) Now we have the solubility of each compound in moles per liter: a. The solubility of \(PbI_{2}\) is \(7.1 \times 10^{-4}\) M. b. The solubility of \(CdCO_{3}\) is \(2.3 \times 10^{-6}\) M. c. The solubility of \(Sr_3(PO_4)_2\) is \(8.9 \times 10^{-11}\) M.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What is the maximum possible concentration of \(\mathrm{Ni}^{2+}\) ion in water at \(25^{\circ} \mathrm{C}\) that is saturated with \(0.10 M\) $\mathrm{H}_{2} \mathrm{S}\( and maintained at \)\mathrm{pH} 3.0\( with \)\mathrm{HCl} ?$

Calculate the solubility of $\mathrm{AgCN}(s)\left(K_{\mathrm{sp}}=2.2 \times 10^{-12}\right)\( in a solution containing \)1.0 M\( \)\mathrm{H}^{+} .\left(K_{\mathrm{a}} \text { for } \mathrm{HCN} \text { is } 6.2 \times 10^{-10} .\right)$

A solution is prepared by mixing 100.0 \(\mathrm{mL}\) of \(1.0 \times 10^{-4} M\) \(\mathrm{Be}\left(\mathrm{NO}_{3}\right)_{2}\) and 100.0 \(\mathrm{mL}\) of $8.0 M\( \)\mathrm{NaF}.$ $$\mathrm{Be}^{2+}(a q)+\mathrm{F}^{-}(a q) \rightleftharpoons \mathrm{BeF}^{+}(a q) \quad K_{1}=7.9 \times 10^{4}$$ $$\operatorname{Be} \mathrm{F}^{+}(a q)+\mathrm{F}^{-}(a q) \rightleftharpoons \operatorname{Be} \mathrm{F}_{2}(a q) \quad K_{2}=5.8 \times 10^{3}$$ $$\operatorname{BeF}_{2}(a q)+\mathrm{F}^{-}(a q) \rightleftharpoons \operatorname{Be} \mathrm{F}_{3}^{-}(a q) \quad K_{3}=6.1 \times 10^{2}$$ $$\operatorname{Be} \mathrm{F}_{3}^{-}(a q)+\mathrm{F}^{-}(a q) \rightleftharpoons \mathrm{BeF}_{4}^{2-}(a q) \qquad K_{4}=2.7 \times 10^{1}$$ Calculate the equilibrium concentrations of $\mathrm{F}^{-}, \mathrm{Be}^{2+}, \mathrm{BeF}^{+},\( \)\mathrm{BeF}_{2}, \mathrm{BeF}_{3}^{-},$ and \(\mathrm{BeF}_{4}^{2-}\) in this solution.

Will a precipitate of \(\mathrm{Cd}(\mathrm{OH})_{2}\) form if \(1.0 \mathrm{mL}\) of \(1.0 \mathrm{M}\) \(\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}\) is added to \(1.0 \mathrm{L}\) of \(5.0 \mathrm{MNH}_{3} ?\) $$\mathrm{Cd}^{2+}(a q)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q) \quad K=1.0 \times 10^{7}$$ $$\mathrm{Cd}(\mathrm{OH})_{2}(s) \rightleftharpoons \mathrm{Cd}^{2+}(a q)+2 \mathrm{OH}^{-}(a q) \quad K_{\mathrm{sp}}=5.9 \times 10^{-15}$$

Calculate the molar solubility of $\mathrm{Cd}(\mathrm{OH})_{2}, K_{\mathrm{sp}}=5.9 \times 10^{-15}.$

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free