Chapter 16: Problem 37
Calculate the molar solubility of $\mathrm{Al}(\mathrm{OH})_{3}, K_{\mathrm{sp}}=2 \times 10^{-32}.$
Chapter 16: Problem 37
Calculate the molar solubility of $\mathrm{Al}(\mathrm{OH})_{3}, K_{\mathrm{sp}}=2 \times 10^{-32}.$
All the tools & learning materials you need for study success - in one app.
Get started for freeThe \(K_{\mathrm{sp}}\) for silver sulfate $\left(\mathrm{Ag}_{2} \mathrm{SO}_{4}\right)\( is \)1.2 \times 10^{-5} .$ Calculate the solubility of silver sulfate in each of the following. a. water b. \(0.10M\) \(\mathrm{AgNO}_{3}\) c. \(0.20M\) \(\mathrm{K}_{2} \mathrm{SO}_{4}\)
A solution is \(1 \times 10^{-4} M\) in \(\mathrm{NaF}\), $\mathrm{Na}_{2} \mathrm{S},\( and \)\mathrm{Na}_{3} \mathrm{PO}_{4} .$ What would be the order of precipitation as a source of \(\mathrm{Pb}^{2+}\) is added gradually to the solution? The relevant \(K_{\mathrm{sp}}\) values are $K_{\mathrm{sp}}\left(\mathrm{PbF}_{2}\right)=4 \times 10^{-8}, K_{\mathrm{sp}}(\mathrm{PbS})=7 \times 10^{-29},$ and $K_{\mathrm{sp}}\left[\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right]=1 \times 10^{-54}.$
The copper(I) ion forms a chloride salt that has $K_{\mathrm{sp}}= 1.2 \times 10^{-6} .\( Copper (I) also forms a complex ion with \)\mathrm{Cl}^{-} :$ $$\mathrm{Cu}^{+}(a q)+2 \mathrm{Cl}^{-}(a q) \rightleftharpoons \mathrm{CuCl}_{2}^{-}(a q) \qquad K=8.7 \times 10^{4}$$ a. Calculate the solubility of copper(I) chloride in pure water. (Ignore \(\mathrm{CuCl}_{2}^{-}\) formation for part a.) b. Calculate the solubility of copper(I) chloride in 0.10\(M\) \(\mathrm{NaCl}\).
Silver chloride dissolves readily in \(2M \mathrm{NH}_{3}\) but is quite insoluble in \(2M \mathrm{NH}_{4} \mathrm{NO}_{3}\) . Explain.
Tooth enamel is composed of the mineral hydroxyapatite. The \(K_{\mathrm{sp}}\) of hydroxyapatite, $\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{OH},\( is \)6.8 \times 10^{-37}$ . Calculate the solubility of hydroxyapatite in pure water in moles per liter. How is the solubility of hydroxyapatite affected by adding acid? When hydroxyapatite is treated with fluoride, the mineral fluorapatite, \(\mathrm{Ca}_{5}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{F}\) , forms. The \(K_{\mathrm{sp}}\) of this substance is \(1 \times 10^{-60}\) . Calculate the solubility of fluorapatite in water. How do these calculations provide a rationale for the fluoridation of drinking water?
What do you think about this solution?
We value your feedback to improve our textbook solutions.