Calculate the solubility of solid $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\left(K_{\mathrm{sp}}=1.3 \times 10^{-32}\right)\( in a \)0.20-M \mathrm{Na}_{3} \mathrm{PO}_{4}$ solution.

Short Answer

Expert verified
The solubility of solid \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\) in a \(0.20-M \mathrm{Na}_{3} \mathrm{PO}_{4}\) solution is approximately \(4.95 \times 10^{-11} M\).

Step by step solution

01

Write Balanced Chemical Equation

For the dissolution of \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\) in water, we can write the balanced chemical equation as follows: \[\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s) \rightleftharpoons 3\mathrm{Ca^{2+}}(aq) + 2\mathrm{PO^{3-}_{4}}(aq)\]
02

Write the Solubility Product Expression

Given the balanced chemical equation, we can now write the solubility product expression \(K_{sp}\) for the reaction. \[K_{sp} = [\mathrm{Ca^{2+}}]^3[\mathrm{PO^{3-}_{4}}]^2\]
03

Set Up the ICE Table

To find the equilibrium concentrations, we can set up an ICE (Initial, Change, Equilibrium) table for the reaction: \[\begin{array}{c|ccc} & \mathrm{Ca}^{2+} & \mathrm{PO}_{4}^{3-} \\ \hline \text{Initial} & 0 & 0.20 \\ \text{Change} & +3s & +2s \\ \text{Equilibrium} & 3s & 0.20 + 2s \end{array}\] Where s is solubility of \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\).
04

Substituting the Equilibrium Concentrations into \(K_{sp}\) Value

Substituting the equilibrium concentrations into the solubility product expression, and using the given \(K_{sp} = 1.3 \times 10^{-32}\): \[1.3 \times 10^{-32} = (3s)^3(0.20 + 2s)^2\]
05

Solve for Solubility

Since \(K_{sp}\) is a very small number, we can approximate that \(0.20 + 2s \approx 0.20\). Therefore, the equation becomes: \[1.3 \times 10^{-32} = (3s)^3(0.20)^2\] Solve for s: \(s \approx 4.95 \times 10^{-11} \mathrm{M}\) The solubility of solid \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\) in a \(0.20-M \mathrm{Na}_{3} \mathrm{PO}_{4}\) solution is approximately \(4.95 \times 10^{-11} \mathrm{M}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calculate the solubility of each of the following compounds in moles per liter. Ignore any acid–base properties. a. \(A g_{3} P O_{4}, K_{s p}=1.8 \times 10^{-18}\) b. \(\mathrm{CaCO}_{3}, K_{\mathrm{sp}}=8.7 \times 10^{-9}\) c. $\mathrm{Hg}_{2} \mathrm{Cl}_{2}, K_{\mathrm{sp}}=1.1 \times 10^{-18}\left(\mathrm{Hg}_{2}^{2+} \right.$ is the cation in is the cation in solution.\()\)

Calculate the concentration of \(\mathrm{Pb}^{2+}\) in each of the following. a. a saturated solution of $\mathrm{Pb}(\mathrm{OH})_{2}, K_{\mathrm{sp}}=1.2 \times 10^{-15}$ b. a saturated solution of \(\mathrm{Pb}(\mathrm{OH})_{2}\) buffered at \(\mathrm{pH}=13.00\) c. Ethylenediaminetetraacetate \(\left(\mathrm{EDTA}^{4-}\right)\) is used as a complexing agent in chemical analysis and has the following structure: Solutions of \(\mathrm{ED} \mathrm{TA}^{4-}\) are used to treat heavy metal poisoning by removing the heavy metal in the form of a soluble complex ion. The reaction of \(\mathrm{EDTA}^{4-}\) with \(\mathrm{Pb}^{2+} \mathrm{is}\) $$\mathrm{Pb}^{2+}(a q)+\mathrm{EDTA}^{4-}(a q) \rightleftharpoons \mathrm{PbEDTA}^{2-}(a q) \quad K=1.1 \times 10^{18}$$ Consider a solution with 0.010 mole of \(\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\) added to 1.0 \(\mathrm{L}\) of an aqueous solution buffered at \(\mathrm{pH}=13.00\) and containing 0.050 \(\mathrm{M}\) Na_thion. Does \(\mathrm{Pb}(\mathrm{OH})_{2}\) precipitate from this solution?

The salt MX has a solubility of $3.17 \times 10^{-8} \mathrm{mol} / \mathrm{L}\( in a solution with \)\mathrm{pH}=0.000 .\( If \)K_{\mathrm{a}}$ for \(\mathrm{HX}\) is \(1.00 \times 10^{-15}\) , calculate the \(K_{\mathrm{sp}}\) value for \(\mathrm{MX}\) .

Will a precipitate form when 100.0 \(\mathrm{mL}\) of \(4.0 \times 10^{-4} M\) \(\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}\) is added to 100.0 \(\mathrm{mL}\) of \(2.0 \times 10^{-4} \mathrm{MNaOH}\)?

A solution contains \(1.0 \times 10^{-5} M \mathrm{Na}_{3} \mathrm{PO}_{4} .\) What concentrations of \(\mathrm{A} \mathrm{g} \mathrm{NO}_{3}\) will cause precipitation of solid \(\mathrm{Ag}_{3} \mathrm{PO}_{4}\) \(\left(K_{\mathrm{sp}}=1.8 \times 10^{-18}\right) ?\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free