Chapter 16: Problem 53
Will a precipitate form when 100.0 \(\mathrm{mL}\) of \(4.0 \times 10^{-4} M\) \(\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}\) is added to 100.0 \(\mathrm{mL}\) of \(2.0 \times 10^{-4} \mathrm{MNaOH}\)?
Chapter 16: Problem 53
Will a precipitate form when 100.0 \(\mathrm{mL}\) of \(4.0 \times 10^{-4} M\) \(\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}\) is added to 100.0 \(\mathrm{mL}\) of \(2.0 \times 10^{-4} \mathrm{MNaOH}\)?
All the tools & learning materials you need for study success - in one app.
Get started for freeA solution is formed by mixing \(50.0 \mathrm{mL}\) of \(10.0 \mathrm{M}\) \(\mathrm{NaX}\) with \(50.0 \mathrm{mL}\) of $2.0 \times 10^{-3} \mathrm{M} \mathrm{CuNO}_{3} .\( Assume that \)\mathrm{Cu}^{+}$ forms complex ions with \(\mathrm{X}^{-}\) as follows: $$\mathrm{Cu}^{+}(a q)+\mathrm{X}^{-}(a q) \rightleftharpoons \mathrm{CuX}(a q) \quad K_{1}=1.0 \times 10^{2}$$ $$\operatorname{CuX}(a q)+\mathrm{X}^{-}(a q) \rightleftharpoons \mathrm{CuX}_{2}^{-}(a q) \qquad K_{2}=1.0 \times 10^{4}$$ $$\operatorname{CuX}_{2}^{-}(a q)+\mathrm{X}^{-}(a q) \rightleftharpoons \mathrm{CuX}_{3}^{2-}(a q) \quad K_{3}=1.0 \times 10^{3}$$ with an overall reaction $$\mathrm{Cu}^{+}(a q)+3 \mathrm{X}^{-}(a q) \rightleftharpoons \mathrm{CuX}_{3}^{2-}(a q) \qquad K=1.0 \times 10^{9}$$ Calculate the following concentrations at equilibrium a. \(\mathrm{CuX}_{3}^{2-} \quad\) b. \(\mathrm{CuX}_{2}^{-} \quad\) c. \(\mathrm{Cu}^{+}\)
The copper(I) ion forms a chloride salt that has $K_{\mathrm{sp}}= 1.2 \times 10^{-6} .\( Copper (I) also forms a complex ion with \)\mathrm{Cl}^{-} :$ $$\mathrm{Cu}^{+}(a q)+2 \mathrm{Cl}^{-}(a q) \rightleftharpoons \mathrm{CuCl}_{2}^{-}(a q) \qquad K=8.7 \times 10^{4}$$ a. Calculate the solubility of copper(I) chloride in pure water. (Ignore \(\mathrm{CuCl}_{2}^{-}\) formation for part a.) b. Calculate the solubility of copper(I) chloride in 0.10\(M\) \(\mathrm{NaCl}\).
A solution contains 0.018 mole each of \(\mathrm{I}^{-}, \mathrm{Br}^{-},\) and \(\mathrm{Cl}^{-}.\) When the solution is mixed with \(200 . \mathrm{mL}\) of \(0.24 M\) \(\mathrm{AgNO}_{3}\) what mass of \(\mathrm{AgCl}(s)\) precipitates out, and what is \(\left[\mathrm{Ag}^{+}\right] ?\) Assume no volume change. $$\mathrm{AgI} : K_{\mathrm{sp}}=1.5 \times 10^{-16}$$ $$\operatorname{AgBr} ; K_{\mathrm{sp}}=5,0 \times 10^{-13}$$ $$\mathrm{AgCl} : K_{\mathrm{sp}}=1.6 \times 10^{-10}$$
Will a precipitate of \(\mathrm{Cd}(\mathrm{OH})_{2}\) form if \(1.0 \mathrm{mL}\) of \(1.0 \mathrm{M}\) \(\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}\) is added to \(1.0 \mathrm{L}\) of \(5.0 \mathrm{MNH}_{3} ?\) $$\mathrm{Cd}^{2+}(a q)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q) \quad K=1.0 \times 10^{7}$$ $$\mathrm{Cd}(\mathrm{OH})_{2}(s) \rightleftharpoons \mathrm{Cd}^{2+}(a q)+2 \mathrm{OH}^{-}(a q) \quad K_{\mathrm{sp}}=5.9 \times 10^{-15}$$
\(\mathrm{Ag}_{2} \mathrm{S}(s)\) has a larger molar solubility than CuS even though \(\mathrm{Ag}_{2} \mathrm{S}\) has the smaller \(K_{\mathrm{sp}}\) value. Explain how this is possible.
What do you think about this solution?
We value your feedback to improve our textbook solutions.