A solution contains $1.0 \times 10^{-6} M \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}\( and \)5.0 \times 10^{-7} M$ \(\mathrm{K}_{3} \mathrm{PO}_{4} .\) Will \(\mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)\) precipitate? $\left[K_{\mathrm{sp}} \text { for } \mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}=1.0 \times 10^{-31} . ] \right.$

Short Answer

Expert verified
The ionic product, \(Q_{sp} = 1.25 \times 10^{-34}\), is less than the solubility product constant, \(K_{sp} = 1.0 \times 10^{-31}\). Therefore, no precipitation of \(\mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}\) will occur in the given solution.

Step by step solution

01

Write the balanced chemical equation for the reaction and expression for \(K_{sp}\)

: First, let's write the balanced chemical equation for the formation of \(\mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}\) solid: \(3 \mathrm{Sr}^{2+}(aq) + 2 \mathrm{PO}_{4}^{3-}(aq) \rightleftharpoons \mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)\) Now we can write the expression for \(K_{sp}\) of \(\mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}\): \(K_{sp} = [\mathrm{Sr}^{2+}]^{3}[\mathrm{PO}_{4}^{3-}]^{2}\) The given value of \(K_{sp}\) for \(\mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}\) is \(1.0 \times 10^{-31}\).
02

Calculate the initial concentrations of \(\mathrm{Sr}^{2+}\) and \(\left(\mathrm{PO}_{4}\right)^{3-}\) ions

: The given initial concentration for the \(\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}\) solution is \(1.0 \times 10^{-6} \mathrm{M}\) and for the \(\mathrm{K}_{3} \mathrm{PO}_{4}\) solution is \(5.0 \times 10^{-7} \mathrm{M}\). Since one mole of \(\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}\) dissociates completely to produce one mole of \(\mathrm{Sr}^{2+}\) ions, the initial concentration of \(\mathrm{Sr}^{2+}\) ions in the solution is also \(1.0 \times 10^{-6} \mathrm{M}\). Likewise, one mole of \(\mathrm{K}_{3} \mathrm{PO}_{4}\) dissociates completely to produce one mole of \(\left(\mathrm{PO}_{4}\right)^{3-}\) ions, so the initial concentration of \(\left(\mathrm{PO}_{4}\right)^{3-}\) ions is \(5.0 \times 10^{-7} \mathrm{M}\).
03

Calculate the ionic product and compare to \(K_{sp}\)

: Now, we can calculate the ionic product of \(\mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}\) using the initial concentrations of \(\mathrm{Sr}^{2+}\) and \(\left(\mathrm{PO}_{4}\right)^{3-}\) ions: \(Q_{sp} = [\mathrm{Sr}^{2+}]^{3}[\mathrm{PO}_{4}^{3-}]^{2} = (1.0 \times 10^{-6})^{3}(5.0 \times 10^{-7})^{2} = 1.25 \times 10^{-34}\) Now, we need to compare the ionic product (\(Q_{sp}\)) with the solubility product constant (\(K_{sp}\)): If \(Q_{sp} > K_{sp}\), then precipitation will occur. If \(Q_{sp} < K_{sp}\), then no precipitation will occur. In this case: \(Q_{sp} = 1.25 \times 10^{-34} < K_{sp} = 1.0 \times 10^{-31}\) Since \(Q_{sp} < K_{sp}\), no precipitation of \(\mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}\) will occur.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Write equations for the step wise formation of each of the following complex ions. a. \(N i(C N)_{4}^{2-}\) b. \(V\left(C_{2} O_{4}\right)_{3}^{3-}\)

A solution contains 0.018 mole each of \(\mathrm{I}^{-}, \mathrm{Br}^{-},\) and \(\mathrm{Cl}^{-}.\) When the solution is mixed with \(200 . \mathrm{mL}\) of \(0.24 M\) \(\mathrm{AgNO}_{3}\) what mass of \(\mathrm{AgCl}(s)\) precipitates out, and what is \(\left[\mathrm{Ag}^{+}\right] ?\) Assume no volume change. $$\mathrm{AgI} : K_{\mathrm{sp}}=1.5 \times 10^{-16}$$ $$\operatorname{AgBr} ; K_{\mathrm{sp}}=5,0 \times 10^{-13}$$ $$\mathrm{AgCl} : K_{\mathrm{sp}}=1.6 \times 10^{-10}$$

A solution contains \(1.0 \times 10^{-5} M \mathrm{Na}_{3} \mathrm{PO}_{4} .\) What concentrations of \(\mathrm{A} \mathrm{g} \mathrm{NO}_{3}\) will cause precipitation of solid \(\mathrm{Ag}_{3} \mathrm{PO}_{4}\) \(\left(K_{\mathrm{sp}}=1.8 \times 10^{-18}\right) ?\)

Use the following data to calculate the \(K_{\mathrm{sp}}\) value for each solid. a. The solubility of \(\mathrm{CaC}_{2} \mathrm{O}_{4}\) is $4.8 \times 10^{-5} \mathrm{mol} / \mathrm{L}$ . b. The solubility of \(\mathrm{BiI}_{3}\) is $1.32 \times 10^{-5} \mathrm{mol} / \mathrm{L}$ .

a. Using the \(K_{\mathrm{sp}}\) value for \(\mathrm{Cu}(\mathrm{OH})_{2}\left(1.6 \times 10^{-19}\right)\) and the overall formation constant for $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\left(1.0 \times 10^{13}\right)$ calculate the value for the equilibrium constant for the following reaction: $$\mathrm{Cu}(\mathrm{OH})_{2}(s)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q)+2 \mathrm{OH}^{-}(a q)$$ b. Use the value of the equilibrium constant you calculated in part a to calculate the solubility (in mol/L) of \(\mathrm{Cu}(\mathrm{OH})_{2}\) in \(5.0M\) \(\mathrm{NH}_{3} .\) In \(5.0M\) \(\mathrm{NH}_{3}\) the concentration of \(\mathrm{OH}^{-}\) is \(0.0095 M\) .

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free