Chapter 16: Problem 56
If \(10.0 \mathrm{mL}\) of $2.0 \times 10^{-3} M \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}\( is added to 10.0 \)\mathrm{mL}$ of a \(\mathrm{pH}=10.0 \mathrm{NaOH}\) solution, will a precipitate form?
Chapter 16: Problem 56
If \(10.0 \mathrm{mL}\) of $2.0 \times 10^{-3} M \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}\( is added to 10.0 \)\mathrm{mL}$ of a \(\mathrm{pH}=10.0 \mathrm{NaOH}\) solution, will a precipitate form?
All the tools & learning materials you need for study success - in one app.
Get started for freeA solution contains $3.0 \times 10^{-3} M \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} .$ What concentrations of \(\mathrm{KF}\) will cause precipitation of solid \(\mathrm{MgF}_{2}\left(K_{\mathrm{sp}}=6.4 \times 10^{-9}\right) ?\)
The \(K_{\mathrm{sp}}\) for lead iodide \(\left(\mathrm{PbI}_{2}\right)\) is $1.4 \times 10^{-8} .$ Calculate the solubility of lead iodide in each of the following. a. water b. \(0.10M\) \(\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\) c. \(0.010 M\) \(\mathrm{NaI}\)
Calculate the mass of manganese hydroxide that dissolves to form 1300 mL of a saturated manganese hydroxide solution. For $\mathrm{Mn}(\mathrm{OH})_{2}, K_{\mathrm{sp}}=2.0 \times 10^{-13}.$
For which salt in each of the following groups will the solubility depend on \(\mathrm{pH}\) ? $\begin{array}{ll}{\text { a. AgF, AgCl, AgBr }} & {\text { c. } \operatorname{Sr}\left(\mathrm{NO}_{3}\right)_{2}, \operatorname{Sr}\left(\mathrm{NO}_{2}\right)_{2}} \\ {\text { b. } \mathrm{Pb}(\mathrm{OH})_{2}, \mathrm{PbCl}_{2}} & {\text { d. } \mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{Ni}(\mathrm{CN})_{2}}\end{array}$
A solution is prepared by mixing 100.0 \(\mathrm{mL}\) of \(1.0 \times 10^{-4} M\) \(\mathrm{Be}\left(\mathrm{NO}_{3}\right)_{2}\) and 100.0 \(\mathrm{mL}\) of $8.0 M\( \)\mathrm{NaF}.$ $$\mathrm{Be}^{2+}(a q)+\mathrm{F}^{-}(a q) \rightleftharpoons \mathrm{BeF}^{+}(a q) \quad K_{1}=7.9 \times 10^{4}$$ $$\operatorname{Be} \mathrm{F}^{+}(a q)+\mathrm{F}^{-}(a q) \rightleftharpoons \operatorname{Be} \mathrm{F}_{2}(a q) \quad K_{2}=5.8 \times 10^{3}$$ $$\operatorname{BeF}_{2}(a q)+\mathrm{F}^{-}(a q) \rightleftharpoons \operatorname{Be} \mathrm{F}_{3}^{-}(a q) \quad K_{3}=6.1 \times 10^{2}$$ $$\operatorname{Be} \mathrm{F}_{3}^{-}(a q)+\mathrm{F}^{-}(a q) \rightleftharpoons \mathrm{BeF}_{4}^{2-}(a q) \qquad K_{4}=2.7 \times 10^{1}$$ Calculate the equilibrium concentrations of $\mathrm{F}^{-}, \mathrm{Be}^{2+}, \mathrm{BeF}^{+},\( \)\mathrm{BeF}_{2}, \mathrm{BeF}_{3}^{-},$ and \(\mathrm{BeF}_{4}^{2-}\) in this solution.
What do you think about this solution?
We value your feedback to improve our textbook solutions.