A solution contains \(1.0 \times 10^{-5} M \mathrm{Na}_{3} \mathrm{PO}_{4} .\) What concentrations of \(\mathrm{A} \mathrm{g} \mathrm{NO}_{3}\) will cause precipitation of solid \(\mathrm{Ag}_{3} \mathrm{PO}_{4}\) \(\left(K_{\mathrm{sp}}=1.8 \times 10^{-18}\right) ?\)

Short Answer

Expert verified
The concentration of \(\mathrm{AgNO}_{3}\) that will cause precipitation of solid \(\mathrm{Ag}_{3}\mathrm{PO}_{4}\) in a solution containing \(1.0 \times 10^{-5} M \mathrm{Na}_{3}\mathrm{PO}_{4}\) is approximately \(5.63 \times 10^{-5} M\).

Step by step solution

01

Write the balanced equation for the reaction

For this precipitation reaction, we have: \[\mathrm{3AgNO}_{3}(aq) + \mathrm{Na}_{3}\mathrm{PO}_{4}(aq) \longrightarrow \mathrm{Ag}_{3}\mathrm{PO}_{4}(s) + 3\mathrm{NaNO}_{3}(aq)\]
02

Write the solubility product expression for \(\mathrm{Ag}_{3}\mathrm{PO}_{4}\)

According to the balanced equation, when \(\mathrm{Ag}_{3}\mathrm{PO}_{4}\) dissolves, it forms 3 moles of \(\mathrm{Ag}^{+}\) ions and 1 mole of \(\mathrm{PO}_{4}^{3-}\) ion. Using these stoichiometric coefficients, we can write the solubility product expression as: \[K_{sp}=[\mathrm{Ag^{+}}]^{3}[{\mathrm{PO}_{4}^{3-}}]\]
03

Calculate the concentration of \(\mathrm{PO}_{4}^{3-}\)

The given concentration of \(\mathrm{Na}_{3}\mathrm{PO}_{4}\) in the solution is \(1.0 \times 10^{-5} M\), which produces an equal concentration of \(\mathrm{PO}_{4}^{3-}\) ions, as there is a 1:1 ratio between them in the balanced equation: \[ [\mathrm{PO}_{4}^{3-}] = 1.0 \times 10^{-5} M \]
04

Write the equation for reaction quotient (Q) and compare it with \(K_{sp}\)

The reaction quotient (\(Q\)) is a ratio of the concentrations of products and reactants raised to the power of their stoichiometric coefficients in a balanced chemical equation. In this case, it is: \[Q=[\mathrm{Ag^{+}}]^{3}[{\mathrm{PO}_{4}^{3-}}]\] To find the concentration of \(\mathrm{AgNO}_{3}\) that causes precipitation, we have to determine the concentration of \(\mathrm{Ag}^{+}\) ions at which \(Q \geq K_{sp}\). When \(Q\) equals or becomes greater than \(K_{sp}\), the system exceeds its solubility limit and precipitation starts to happen.
05

Determine the concentration of \(\mathrm{Ag^{+}}\) ions for precipitation

Use the given value of \(K_{sp}\) for \(\mathrm{Ag}_{3}\mathrm{PO}_{4}\) and the concentration of \(\mathrm{PO}_{4}^{3-}\) ions determined in Step 3 to solve for the concentration of \(\mathrm{Ag^{+}}\) ions: \[1.8 \times 10^{-18} = [\mathrm{Ag^{+}}]^{3} \times (1.0 \times 10^{-5})\] \[1.8 \times 10^{-13} = [\mathrm{Ag^{+}}]^{3}\] Now, solve for \([\mathrm{Ag^{+}}]\): \[[\mathrm{Ag^{+}}] = (1.8 \times 10^{-13})^{\frac{1}{3}}\] \[[\mathrm{Ag^{+}}] \approx 5.63 \times 10^{-5} M\] Since all the \(\mathrm{Ag}^{+}\) ions are present in the form of \(\mathrm{AgNO}_{3}\) (1:1 stoichiometry), the concentration of \(\mathrm{AgNO}_{3}\) that will cause precipitation is: \[[\mathrm{AgNO}_{3}] = [\mathrm{Ag^{+}}] \approx 5.63 \times 10^{-5} M\]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For each of the following pairs of solids, determine which solid has the smallest molar solubility. a. \(\mathrm{FeC}_{2} \mathrm{O}_{4}, K_{\mathrm{sp}}=2.1 \times 10^{-7},\) or $\mathrm{Cu}\left(\mathrm{IO}_{4}\right)_{2}, K_{\mathrm{sp}}=1.4 \times 10^{-7}$ b. \(\mathrm{Ag}_{2} \mathrm{CO}_{3}, K_{\mathrm{sp}}=8.1 \times 10^{-12},\) or \(\mathrm{Mn}(\mathrm{OH})_{2},\) \(K_{\mathrm{sp}}=2 \times 10^{-13}\)

The concentration of \(\mathrm{Pb}^{2+}\) in a solution saturated with \(\mathrm{PbBr}_{2}(s)\) is \(2.14 \times 10^{-2} \mathrm{M} .\) Calculate \(K_{\mathrm{sp}}\) for \(\mathrm{PbBr}_{2}.\)

Calculate the solubility of each of the following compounds in moles per liter. Ignore any acid–base properties. a. \(P b I_{2}, K_{s p}=1.4 \times 10^{-8}\) b. \(\operatorname{CdCO}_{3}, K_{s p}=5.2 \times 10^{-12}\) c. $\operatorname{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}, K_{s p}=1 \times 10^{-31}$

The copper(I) ion forms a chloride salt that has $K_{\mathrm{sp}}= 1.2 \times 10^{-6} .\( Copper (I) also forms a complex ion with \)\mathrm{Cl}^{-} :$ $$\mathrm{Cu}^{+}(a q)+2 \mathrm{Cl}^{-}(a q) \rightleftharpoons \mathrm{CuCl}_{2}^{-}(a q) \qquad K=8.7 \times 10^{4}$$ a. Calculate the solubility of copper(I) chloride in pure water. (Ignore \(\mathrm{CuCl}_{2}^{-}\) formation for part a.) b. Calculate the solubility of copper(I) chloride in 0.10\(M\) \(\mathrm{NaCl}\).

The active ingredient of Pepto-Bismol is the compound bismuth subsalicylate, which undergoes the following dissociation when added to water: $$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{BiO}_{4}(s)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{3}^{2-}(a q) +\mathrm{Bi}^{3+}(a q)+\mathrm{OH}^{-}(a q) \qquad K=?$$ If the maximum amount of bismuth subsalicylate that reacts by this reaction is \(3.2 \times 10^{-19} \mathrm{mol} / \mathrm{L}\) , calculate the equilibrium constant for the preceding reaction.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free