A solution is prepared by adding 0.10 mole of \(\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{2}\) to 0.50 \(\mathrm{L}\) of \(3.0 M\) \(\mathrm{NH}_{3}\) . Calculate \(\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\right]\) and \(\left[\mathrm{Ni}^{2+}\right]\) in this solution. \(K_{\text { overall }}\) for \(\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\) is \(5.5 \times 10^{8} .\) That is, $$5.5 \times 10^{8}=\frac{\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\right]}{\left[\mathrm{Ni}^{2+}\right]\left[\mathrm{NH}_{3}\right]^{6}}$$ for the overall reaction $$\mathrm{Ni}^{2+}(a q)+6 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}(a q)$$

Short Answer

Expert verified
The concentrations of \(\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\) and \(\mathrm{Ni}^{2+}\) in the solution are both \(9.975 \times 10^{-4}\) M.

Step by step solution

01

Identify moles and initial concentrations

Given, 0.10 mole of \(\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\mathrm{Cl}_{2}\) is added to 0.50 L of 3.0 M \(\mathrm{NH}_{3}\). The initial concentration of ammonia can be calculated as follows: Initial moles of $\mathrm{NH}_{3} = \text{Initial concentration} \times \text{Volume} \\ \text{Initial moles of } \mathrm{NH}_{3} = 3.0 \ \text{M} \times 0.50 \ \text{L} = 1.5 \ \text{moles}$
02

Select a change table to represent the reaction

We can set up a change table (also called an ICE table) to represent the initial concentrations of the species, the change, and the equilibrium concentrations. Reaction: $$\mathrm{Ni}^{2+}(a q)+6 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}(a q)$$ | Species | Initial Concentration| Change | Equilibrium Concentration | |--------------|-----------------|-------|--------------------| | \(\mathrm{Ni}^{2+}\) | 0 | +x | x | | \(\mathrm{NH}_{3}\) | 1.5 M | -6x | 1.5 - 6x | | \(\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\) | 0 | -x | x |
03

Substitute the equilibrium concentrations in the overall equilibrium constant expression

Now, substitute the equilibrium concentrations in the overall equilibrium constant expression is \(5.5 \times 10^{8} =\frac{\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\right]}{\left[\mathrm{Ni}^{2+}\right]\left[\mathrm{NH}_{3}\right]^{6}}\): $$5.5 \times 10^{8} =\frac{x}{x(1.5 - 6x)^{6}}$$
04

Solve for the concentration of \(\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\)

Rearrange the equation: $$x = - \frac{1}{6} + \sqrt{\frac{1}{36} + 5.5 \times 10^{8}}$$ Solve for the concentration of \(\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\): \(x = 9.975 \times 10^{-4} \ \text{M}\) Thus, the concentration of \(\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\) is \(9.975 \times 10^{-4}\) M.
05

Solve for the equilibrium concentration of \(\mathrm{Ni}^{2+}\)

Using the change table, we find that the equilibrium concentration of \(\mathrm{Ni}^{2+}\) is also equal to the concentration of \(\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\): Equilibrium concentration of \(\mathrm{Ni}^{2+} = x = 9.975 \times 10^{-4} \ \text{M}\) Thus, the concentration of \(\mathrm{Ni}^{2+}\) in the solution is \(9.975 \times 10^{-4}\) M.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Magnesium hydroxide, \(\operatorname{Mg}(\mathrm{OH})_{2},\) is the active ingredient in the antacid TUMS and has a \(K_{\mathrm{sp}}\) value of $8.9 \times 10^{-12}\( . If a 10.0 -g sample of \)\mathrm{Mg}(\mathrm{OH})_{2}$ is placed in \(500.0 \mathrm{mL}\) of solution, calculate the moles of OH -ions present. Because the \(K_{\mathrm{sp}}\) value for \(\mathrm{Mg}(\mathrm{OH})_{2}\) is much less than \(1,\) not a lot solid dissolves in solution. Explain how \(\mathrm{Mg}(\mathrm{OH})_{2}\) works to neutralize large amounts of stomach acid.

A solution contains $3.0 \times 10^{-3} M \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} .$ What concentrations of \(\mathrm{KF}\) will cause precipitation of solid \(\mathrm{MgF}_{2}\left(K_{\mathrm{sp}}=6.4 \times 10^{-9}\right) ?\)

As sodium chloride solution is added to a solution of silver nitrate, a white precipitate forms. Ammonia is added to the mixture and the precipitate dissolves. When potassium bromide solution is then added, a pale yellow precipitate appears. When a solution of sodium thiosulfate is added, the yellow precipitate dissolves. Finally, potassium iodide is added to the solution and a yellow precipitate forms. Write equations for all the changes mentioned above. What conclusions can you draw concerning the sizes of the \(K_{\mathrm{sp}}\) values for \(\mathrm{AgCl}, \mathrm{AgBr},\) and \(\mathrm{AgI?}\)

Write balanced equations for the dissolution reactions and the corresponding solubility product expressions for each of the following solids a. \(\mathrm{Ag}_{2} \mathrm{CO}_{3}\) b. \(\mathrm{Ce}\left(\mathrm{IO}_{3}\right)_{3}\) c. \(\mathrm{BaF}_{2}\)

Calculate the equilibrium concentrations of $\mathrm{NH}_{3}, \mathrm{Cu}^{2+}\( \)\mathrm{Cu}\left(\mathrm{NH}_{3}\right)^{2+}, \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}^{2+}, \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{3}^{2+},$ and \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\) in a solution prepared by mixing \(500.0 \mathrm{mL}\) of \(3.00M\) \(\mathrm{NH}_{3}\) with $500.0 \mathrm{mL}\( of \)2.00 \times 10^{-3} \mathrm{M} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ . The step wise equilibria are $$\mathrm{Cu}^{2+}(a q)+\mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{CuNH}_{3}^{2+}(a q) \quad K_{1}=1.86 \times 10^{4}$$ $$\mathrm{CuNH}_{3}^{2+}(a q)+\mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}^{2+}(a q) \quad K_{2}=3.88 \times 10^{3}$$ $$\mathrm{Cu}\left(\mathrm{NH}_{2}\right)_{2}^{2+}(a q)+\mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{2}\right)_{3}^{2+}(a q) \quad K_{3}=1.00 \times 10^{3}$$ $$\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{3}^{2+}(a q)+\mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q) \quad K_{4}=1.55 \times 10^{2}$$

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free