Chapter 16: Problem 9
Sodium chloride is listed in the solubility rules as a soluble compound. Therefore, the \(K_{\mathrm{sp}}\) value for \(\mathrm{NaCl}\) is infinite. Is this statement true or false? Explain.
Chapter 16: Problem 9
Sodium chloride is listed in the solubility rules as a soluble compound. Therefore, the \(K_{\mathrm{sp}}\) value for \(\mathrm{NaCl}\) is infinite. Is this statement true or false? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe \(K_{\mathrm{sp}}\) of \(\mathrm{Al}(\mathrm{OH})_{3}\) is $2 \times 10^{-32} .\( At what pH will a \)0.2-M\( \)\mathrm{Al}^{3+}$ solution begin to show precipitation of \(\mathrm{Al}(\mathrm{OH})_{3} ?\)
Calculate the concentration of \(\mathrm{Pb}^{2+}\) in each of the following. a. a saturated solution of $\mathrm{Pb}(\mathrm{OH})_{2}, K_{\mathrm{sp}}=1.2 \times 10^{-15}$ b. a saturated solution of \(\mathrm{Pb}(\mathrm{OH})_{2}\) buffered at \(\mathrm{pH}=13.00\) c. Ethylenediaminetetraacetate \(\left(\mathrm{EDTA}^{4-}\right)\) is used as a complexing agent in chemical analysis and has the following structure: Solutions of \(\mathrm{ED} \mathrm{TA}^{4-}\) are used to treat heavy metal poisoning by removing the heavy metal in the form of a soluble complex ion. The reaction of \(\mathrm{EDTA}^{4-}\) with \(\mathrm{Pb}^{2+} \mathrm{is}\) $$\mathrm{Pb}^{2+}(a q)+\mathrm{EDTA}^{4-}(a q) \rightleftharpoons \mathrm{PbEDTA}^{2-}(a q) \quad K=1.1 \times 10^{18}$$ Consider a solution with 0.010 mole of \(\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\) added to 1.0 \(\mathrm{L}\) of an aqueous solution buffered at \(\mathrm{pH}=13.00\) and containing 0.050 \(\mathrm{M}\) Na_thion. Does \(\mathrm{Pb}(\mathrm{OH})_{2}\) precipitate from this solution?
A solution contains $1.0 \times 10^{-6} M \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}\( and \)5.0 \times 10^{-7} M$ \(\mathrm{K}_{3} \mathrm{PO}_{4} .\) Will \(\mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)\) precipitate? $\left[K_{\mathrm{sp}} \text { for } \mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}=1.0 \times 10^{-31} . ] \right.$
In the presence of \(\mathrm{CN}^{-}, \mathrm{Fe}^{3+}\) forms the complex ion \(\mathrm{Fe}(\mathrm{CN})_{6}^{3-} .\) The equilibrium concentrations of \(\mathrm{Fe}^{3+}\) and \(\mathrm{Fe}(\mathrm{CN})_{6}^{3-}\) are $8.5 \times 10^{-40} \mathrm{M}\( and \)1.5 \times 10^{-3} M,\( respectively, in a \)0.11-M$ KCN solution. Calculate the value for the overall formation constant of \(\mathrm{Fe}(\mathrm{CN})_{6}^{3-}\) . $$\mathrm{Fe}^{3+}(a q)+6 \mathrm{CN}^{-}(a q) \rightleftharpoons \mathrm{Fe}(\mathrm{CN})_{6}^{3-}(a q) \qquad K_{\text { overall }}=?$$
A solution is prepared by mixing 100.0 \(\mathrm{mL}\) of \(1.0 \times 10^{-4} M\) \(\mathrm{Be}\left(\mathrm{NO}_{3}\right)_{2}\) and 100.0 \(\mathrm{mL}\) of $8.0 M\( \)\mathrm{NaF}.$ $$\mathrm{Be}^{2+}(a q)+\mathrm{F}^{-}(a q) \rightleftharpoons \mathrm{BeF}^{+}(a q) \quad K_{1}=7.9 \times 10^{4}$$ $$\operatorname{Be} \mathrm{F}^{+}(a q)+\mathrm{F}^{-}(a q) \rightleftharpoons \operatorname{Be} \mathrm{F}_{2}(a q) \quad K_{2}=5.8 \times 10^{3}$$ $$\operatorname{BeF}_{2}(a q)+\mathrm{F}^{-}(a q) \rightleftharpoons \operatorname{Be} \mathrm{F}_{3}^{-}(a q) \quad K_{3}=6.1 \times 10^{2}$$ $$\operatorname{Be} \mathrm{F}_{3}^{-}(a q)+\mathrm{F}^{-}(a q) \rightleftharpoons \mathrm{BeF}_{4}^{2-}(a q) \qquad K_{4}=2.7 \times 10^{1}$$ Calculate the equilibrium concentrations of $\mathrm{F}^{-}, \mathrm{Be}^{2+}, \mathrm{BeF}^{+},\( \)\mathrm{BeF}_{2}, \mathrm{BeF}_{3}^{-},$ and \(\mathrm{BeF}_{4}^{2-}\) in this solution.
What do you think about this solution?
We value your feedback to improve our textbook solutions.