Predict the sign of \(\Delta S^{\circ}\) and then calculate \(\Delta S^{\circ}\) for each of the following reactions. a. $2 \mathrm{H}_{2} \mathrm{S}(g)+\mathrm{SO}_{2}(g) \longrightarrow 3 \mathrm{S}_{\text { rhombic}}(s)+2 \mathrm{H}_{2} \mathrm{O}(g)$ b. $2 \mathrm{SO}_{3}(g) \longrightarrow 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g)$ c. $\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{Fe}(s)+3 \mathrm{H}_{2} \mathrm{O}(g)$

Short Answer

Expert verified
a. For the reaction $2 \mathrm{H}_{2} \mathrm{S}(g)+\mathrm{SO}_{2}(g) \longrightarrow 3 \mathrm{S}_{\text { rhombic}}(s)+2 \mathrm{H}_{2} \mathrm{O}(g)$, we predict a negative sign for \(\Delta S^{\circ}\) because the number of moles of gas decreases. The calculated value of \(\Delta S^{\circ}\) is -194 J K^{-1} mol^{-1}. b. For the reaction $2 \mathrm{SO}_{3}(g) \longrightarrow 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g)$, we predict a positive sign for \(\Delta S^{\circ}\) due to an increase in the number of moles of gas. c. For the reaction $\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{Fe}(s)+3 \mathrm{H}_{2} \mathrm{O}(g)$, we predict a positive sign for \(\Delta S^{\circ}\) due to an increase in the number of moles of gas.

Step by step solution

01

Look up the standard molar entropies

From a standard molar entropy table, we find the following values: \(S^{\circ}(\mathrm{H}_{2} \mathrm{S}) = 205.8 \mathrm{J K^{-1} mol^{-1}}\) \(S^{\circ}(\mathrm{SO}_{2}) = 248.1 \mathrm{J K^{-1} mol^{-1}}\) \(S^{\circ}(\mathrm{S}_{\text { rhombic}}) = 31.7 \mathrm{J K^{-1} mol^{-1}}\)
02

Multiply standard molar entropies by respective coefficients

We multiply the standard molar entropy values by their respective stoichiometric coefficients in the balanced reaction: \(2 \times 205.8 \mathrm{J K^{-1} mol^{-1}} = 411.6 \mathrm{J K^{-1} mol^{-1}}\) \(3 \times 31.7 \mathrm{J K^{-1} mol^{-1}} = 95.1 \mathrm{J K^{-1} mol^{-1}}\)
03

Sum the entropy values of the products

We add the entropy values of the products: \(S^{\circ}_{\text{products}} = 95.1 + 370.6 = 465.7 \mathrm{J K^{-1} mol^{-1}}\)
04

Sum the entropy values of the reactants

We add the entropy values of the reactants: \(S^{\circ}_{\text{reactants}} = 411.6 + 248.1 = 659.7 \mathrm{J K^{-1} mol^{-1}}\)
05

Calculate \(\Delta S^{\circ}\)

We subtract the total entropy of the reactants from the total entropy of the products: \(\Delta S^{\circ} = S^{\circ}_{\text{products}} - S^{\circ}_{\text{reactants}} = 465.7 - 659.7 = -194 \mathrm{J K^{-1} mol^{-1}}\) Since the number of moles of gas is decreasing, the prediction of the negative sign for \(\Delta S^{\circ}\) is correct. Repeat the steps for the other two reactions: b. $2 \mathrm{SO}_{3}(g) \longrightarrow 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g)$ c. $\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{Fe}(s)+3 \mathrm{H}_{2} \mathrm{O}(g)$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The enthalpy of vaporization of ethanol is 38.7 kJ/mol at its boiling point \(\left(78^{\circ} \mathrm{C}\right) .\) Determine $\Delta S_{\mathrm{sys}}, \Delta S_{\mathrm{surr}},\( and \)\Delta S_{\mathrm{univ}}$ when 1.00 mole of ethanol is vaporized at \(78^{\circ} \mathrm{C}\) and 1.00 atm.

At \(100 .^{\circ} \mathrm{C}\) and $1.00 \mathrm{atm}, \Delta H^{\circ}=40.6 \mathrm{kJ} / \mathrm{mol}\( for the vaporization of water. Estimate \)\Delta G^{\circ}$ for the vaporization of water at \(90 .^{\circ} \mathrm{C}\) and \(110 .^{\circ} \mathrm{C}\) . Assume $\Delta H^{\circ}\( and \)\Delta S^{\circ}\( at \)100 .^{\circ} \mathrm{C}$ and 1.00 \(\mathrm{atm}\) do not depend on temperature.

When the environment is contaminated by a toxic or potentially toxic substance (for example, from a chemical spill or the use of insecticides), the substance tends to disperse. How is this consistent with the second law of thermodynamics? In terms of the second law, which requires the least work: cleaning the environment after it has been contaminated or trying to prevent the contamination before it occurs? Explain.

The following reaction occurs in pure water: $$\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(a q)$$ which is often abbreviated as $$\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q)$$ For this reaction, \(\Delta G^{\circ}=79.9 \mathrm{kJ} / \mathrm{mol}\) at \(25^{\circ} \mathrm{C}\) . Calculate the value of \(\Delta G\) for this reaction at \(25^{\circ} \mathrm{C}\) when \(\left[\mathrm{OH}^{-}\right]=0.15 M\) and \(\left[\mathrm{H}^{+}\right]=0.71 M .\)

True or false: High temperatures are favorable to a reaction both kinetically and thermodynamically. Explain.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free