An electrochemical cell is set up using the following unbalanced reaction:
$$\mathrm{M}^{a+}(a q)+\mathrm{N}(s) \longrightarrow \mathrm{N}^{2+}(a
q)+\mathrm{M}(s)$$
The standard reduction potentials are:
$$\mathrm{M}^{a+}+a \mathrm{e}^{-} \longrightarrow \mathrm{M} \quad
\mathscr{E}^{\circ}=0.400 \mathrm{V}$$
$$\mathrm{N}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{N} \quad
\mathscr{E}^{\circ}=0.240 \mathrm{V}$$
The cell contains 0.10\(M \mathrm{N}^{2+}\) and produces a voltage of 0.180
\(\mathrm{V}\) . If the concentration of \(\mathrm{M}^{a+}\) is such that the
value of the reaction quotient \(Q\) is \(9.32 \times 10^{-3},\) calculate
\(\left[\mathrm{M}^{a+}\right] .\) Calculate \(w_{\text { max }}\) for this
electrochemical cell.