Give the balanced cell equation and determine \(\mathscr{E}^{\circ}\) for the galvanic cells based on the following half-reactions. Standard reduction potentials are found in Table 18.1. a. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$ $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ b. \(2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}\) \(\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}\)

Short Answer

Expert verified
a. Balanced cell equation: \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3\mathrm{H}_{2}\mathrm{O}_{2}+20\mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+13\mathrm{H}_{2}\mathrm{O}\), Standard cell potential: \(\mathscr{E}^{\circ}=-0.44\,\text{V}\) b. Balanced cell equation: \(6\mathrm{H}^{+}+\mathrm{Al}^{3+}+9\mathrm{e}^{-} \rightarrow 3\mathrm{H}_{2}+\mathrm{Al}\), Standard cell potential: \(\mathscr{E}^{\circ}=1.66\,\text{V}\)

Step by step solution

01

Identify the oxidation and reduction half-reactions.

The two half-reactions are: 1. \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}\) (Reduction half-reaction) 2. \(\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}\) (Oxidation half-reaction)
02

Balance the electrons in the half-reactions.

We need to multiply each half-reaction to make the number of electrons equal in both. Multiply the second reaction with 3, so we'll have 6 electrons in each reaction: 1. \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}\) 2. \(3(\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}) \Rightarrow 3\mathrm{H}_{2}\mathrm{O}_{2}+6\mathrm{H}^{+}+6\mathrm{e}^{-}\rightarrow 6\mathrm{H}_{2} \mathrm{O}\)
03

Add half-reactions to get the overall cell reaction.

Add the two balanced half-reactions to get the overall cell reaction: \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-}+3\mathrm{H}_{2}\mathrm{O}_{2}+6\mathrm{H}^{+}+6\mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+6\mathrm{H}_{2} \mathrm{O}\) Simplify the equation: \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3\mathrm{H}_{2}\mathrm{O}_{2}+20\mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+13\mathrm{H}_{2}\mathrm{O}\)
04

Calculate the standard cell potential \(\mathscr{E}^{\circ}\) using the given standard reduction potentials:

The standard cell potential \(\mathscr{E}^{\circ}\) is the difference between the standard reduction potentials of the two half-reactions. Table 18.1 values: \(\mathscr{E}^{\circ}_\text{Cr}=1.33\,\text{V}\) (for the first half-reaction) \(\mathscr{E}^{\circ}_\text{H2O2}=1.77\,\text{V}\) (for the second half-reaction) Since \(\mathrm{H}_{2} \mathrm{O}_{2}\) is the oxidizing agent (it's being reduced), we'll have: \(\mathscr{E}^{\circ}=\mathscr{E}^{\circ}_\text{Cr}-\mathscr{E}^{\circ}_\text{H2O2}=1.33\,\text{V}-1.77\,\text{V}=-0.44\,\text{V}\) For the second galvanic cell:
05

Identify the oxidation and reduction half-reactions.

The two half-reactions are: 1. \(2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}\) (Reduction half-reaction) 2. \(\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}\) (Oxidation half-reaction)
06

Balance the electrons in the half-reactions.

Multiply the first reaction by 3 to equalize the number of electrons in each half-reaction: 1. \(3(2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2})\Rightarrow 6\mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 3\mathrm{H}_{2}\) 2. \(\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}\)
07

Add half-reactions to get the overall cell reaction.

Add the two balanced half-reactions to get the overall cell reaction: \(6\mathrm{H}^{+}+6 \mathrm{e}^{-}+\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightarrow 3\mathrm{H}_{2}+\mathrm{Al}\)
08

Calculate the standard cell potential \(\mathscr{E}^{\circ}\) using the given standard reduction potentials:

The standard cell potential \(\mathscr{E}^{\circ}\) is the difference between the standard reduction potentials of the two half-reactions. Table 18.1 values: \(\mathscr{E}^\circ_\text{H}=0\,\text{V}\) (for the first half-reaction) \(\mathscr{E}^\circ_\text{Al}=-1.66\,\text{V}\) (for the second half-reaction) Since \(\mathrm{H}^{+}\) is the oxidizing agent (it's being reduced), we'll have: \(\mathscr{E}^{\circ}=\mathscr{E}^{\circ}_\text{H}-\mathscr{E}^{\circ}_\text{Al}=0\,\text{V}-(-1.66\,\text{V})=1.66\,\text{V}\) In summary for both galvanic cells, the balanced cell equations and standard cell potentials are: a. \(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3\mathrm{H}_{2}\mathrm{O}_{2}+20\mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+13\mathrm{H}_{2}\mathrm{O}\), \(\mathscr{E}^{\circ}=-0.44\,\text{V}\) b. \(6\mathrm{H}^{+}+\mathrm{Al}^{3+}+9\mathrm{e}^{-} \rightarrow 3\mathrm{H}_{2}+\mathrm{Al}\), \(\mathscr{E}^{\circ}=1.66\,\text{V}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

You have a concentration cell with Cu electrodes and \(\left[\mathrm{Cu}^{2+}\right]=1.00 M(\text { right side })\) and $1.0 \times 10^{-4} M(\text { left side })$ a. Calculate the potential for this cell at \(25^{\circ} \mathrm{C}\) b. The \(\mathrm{Cu}^{2+}\) ion reacts with \(\mathrm{NH}_{3}\) to form \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\) by the following equation: $$\begin{aligned} \mathrm{Cu}^{2+}(a q)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q) & \\\ & K=1.0 \times 10^{13} \end{aligned}$$ Calculate the new cell potential after enough \(\mathrm{NH}_{3}\) is added to the left cell compartment such that at equilibrium \(\left[\mathrm{NH}_{3}\right]=2.0 \mathrm{M} .\)

When magnesium metal is added to a beaker of \(\mathrm{HCl}(\mathrm{aq})\), a gas is produced. Knowing that magnesium is oxidized and that hydrogen is reduced, write the balanced equation for the reaction. How many electrons are transferred in the balanced equation? What quantity of useful work can be obtained when \(\mathrm{Mg}\) is added directly to the beaker of \(\mathrm{HCl}\)? How can you harness this reaction to do useful work?

An electrochemical cell consists of a standard hydrogen electrode and a copper metal electrode. If the copper electrode is placed in a solution of 0.10$M \mathrm{NaOH}\( that is saturated with \)\mathrm{Cu}(\mathrm{OH})_{2},$ what is the cell potential at $25^{\circ} \mathrm{C} ?\left[\text { For } \mathrm{Cu}(\mathrm{OH})_{2}\right.\( \)K_{\mathrm{sp}}=1.6 \times 10^{-19} . ]$

The general rule for salt bridges is that anions flow to the anode and cations flow to the cathode. Explain why this is true.

Consider the following half-reactions: $$\begin{array}{ll}{\mathrm{IrCl}_{6}^{3-}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Ir}+6 \mathrm{Cl}^{-}} & {\mathscr{E}^{\circ}=0.77 \mathrm{V}} \\\ {\mathrm{PtCl}_{4}^{2-}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pt}+4 \mathrm{Cl}^{-}} & {\mathscr{E}^{\circ}=0.73 \mathrm{V}} \\\ {\mathrm{PdCl}_{4}^{2-}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pd}+4 \mathrm{Cl}^{-}} & {\mathscr{E}^{\circ}=0.62 \mathrm{V}}\end{array}$$ A hydrochloric acid solution contains platinum, palladium, and iridium as chloro-complex ions. The solution is a constant 1.0\(M\) in chloride ion and 0.020\(M\) in each complex ion. Is it feasible to separate the three metals from this solution by electrolysis? (Assume that 99\(\%\) of a metal must be plated out before another metal begins to plate out.)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free