Consider the galvanic cell based on the following halfreactions: $$\begin{array}{ll}{\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn}} & {\mathscr{E}^{\circ}=-0.76 \mathrm{V}} \\ {\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}} & {\mathscr{E}^{\circ}=-0.44 \mathrm{V}}\end{array}$$ a. Determine the overall cell reaction and calculate $\mathscr{E}_{\text { cell }}$ b. Calculate \(\Delta G^{\circ}\) and \(K\) for the cell reaction at $25^{\circ} \mathrm{C}$ c. Calculate \(\mathscr{E}_{\text { cell }}\) at \(25^{\circ} \mathrm{C}\) when \(\left[\mathrm{Zn}^{2+}\right]=0.10 M\) and $\left[\mathrm{Fe}^{2+}\right]=1.0 \times 10^{-5} \mathrm{M} .$

Short Answer

Expert verified
The overall cell reaction is: \( \mathrm{Zn} + \mathrm{Fe}^{2+} \longrightarrow \mathrm{Zn}^{2+} + \mathrm{Fe} \) with a standard cell potential of \(0.32\,\mathrm{V}\), a change in Gibbs free energy of \(-61830\,\mathrm{J \ mol^{-1}}\), an equilibrium constant of \(4.79 \times 10^{25}\), and a cell potential of \(0.349\,\mathrm{V}\) at \(25^\circ \text{C}\) when \([\mathrm{Zn}^{2+}]=0.10\,\text{M}\) and \([\mathrm{Fe}^{2+}]=1.0\times 10^{-5}\,\text{M}\).

Step by step solution

01

Identify the oxidation and reduction half-reactions

Based on the standard electrode potentials, the reaction with a higher standard electrode potential (less negative) is more likely to proceed in the direction of reduction, and the less positive reaction is more likely to proceed in the direction of oxidation. So, Fe2+ must be reduced, and Zn2+ must be oxidized: $$\begin{array}{ll} \mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn} & \mathscr{E}^{\circ}=-0.76 \mathrm{V} \ (\text {Oxidation})\\ \mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe} & \mathscr{E}^{\circ}=-0.44 \mathrm{V} \ (\text {Reduction}) \end{array}$$
02

Balance the electron transfer

Since both half-reactions have a transfer of two electrons, there is no need to balance the electrons in this case.
03

Add the half-reactions to find the overall cell reaction

Add together the oxidation and reduction reactions to obtain the overall cell reaction: $$\mathrm{Zn} + \mathrm{Fe}^{2+} \longrightarrow \mathrm{Zn}^{2+} + \mathrm{Fe}$$
04

Calculate E_cell

Using the given standard electrode potentials, calculate the cell potential using the equation: $$\mathscr{E}_{\text {cell}} = \mathscr{E}_{\text{cathode}} -\mathscr{E}_{\text{anode}}$$ $$\mathscr{E}_{\text {cell}} = (-0.44\,\mathrm{V}) - (-0.76\,\mathrm{V}) = 0.32\,\mathrm{V}$$ #b. Calculate ΔG° and K for the cell reaction at 25°C#
05

Calculate ΔG°

Calculate the change in Gibbs free energy (\(\Delta G^\circ\)) using the formula: $$\Delta G^\circ = -nF\mathscr{E}^\circ_{\text{cell}}$$ where \(n\) is the number of moles of electrons transferred; \(F\) is the Faraday constant (\(96485\,\text{C}\, \text{mol}^{-1}\)); and \(\mathscr{E}_{\text {cell}}^\circ\) is the standard cell potential. In this case, \(n = 2\) moles of electrons are transferred, thus: $$\Delta G^\circ = -2 \times 96485\,\mathrm{C\, mol}^{-1} \times 0.32\,\mathrm{V} = -61830\,\mathrm{J\, mol^{-1}}$$
06

Calculate K

Find the equilibrium constant \(K\) using the relationship: $$\Delta G^\circ = -RT \ln K$$ Where \(R\) is the gas constant (\(8.314\, \mathrm{J \, K^{-1} mol^{-1}}\)), \(T\) is the temperature in Kelvin (\(298\, \text{K}\)), and \(K\) is the equilibrium constant. Rearrange the equation and solve for \(K\): $$K = e^{(-\Delta G^\circ) / (RT)}$$ $$K = e^{61830\, \mathrm{J \ mol^{-1}} / (8.314\,\mathrm{J \, K^{-1} mol^{-1}} \times 298\,\text{K})} = 4.79 \times 10^{25}$$ #c. Calculate E_cell at 25°C when [Zn2+]=0.10 M and [Fe2+]=1.0 × 10⁻⁵ M.#
07

Apply the Nernst Equation

The Nernst equation describes the relationship between the equilibrium reduction potential of half-cell reactions and the standard cell potential under non-standard conditions. Calculate the cell potential (\(\mathscr{E}_{\text {cell}}\)) using the Nernst equation: $$\mathscr{E}_{\text {cell}} = \mathscr{E}_{\text {cell}}^{\circ} - \frac{RT}{nF} \ln\left(\frac{[\mathrm{Zn}^{2+}]}{[\mathrm{Fe}^{2+}]}\right)$$ Plug in the values, with \(T = 298\,\text{K}\), \(R = 8.314\,\mathrm{J \, K^{-1} mol^{-1}}\), \(F = 96485\,\mathrm{C\, mol^{-1}}\), \(n = 2\), and \([\mathrm{Zn}^{2+}] = 0.10\,\text{M}\, [\mathrm{Fe}^{2+}] = 1.0 \times 10^{-5}\,\text{M}\): $$\mathscr{E}_{\text {cell}} = 0.32\,\mathrm{V} - \frac{(8.314 \,\mathrm{J \, K^{-1} mol^{-1}}) (298\,\text{K})}{ 2(96485\,\mathrm{C \, mol}^{-1})} \ln\left(\frac{0.10\,\text{M}}{1.0 \times 10^{-5}\,\text{M}}\right)$$
08

Solve for E_cell

Solve the equation to find the cell potential: $$\mathscr{E}_{\text{cell}}= 0.349\,\text{V}$$ In summary, the overall cell reaction is: $$\mathrm{Zn} + \mathrm{Fe}^{2+} \longrightarrow \mathrm{Zn}^{2+} + \mathrm{Fe}$$ with a standard cell potential of \(0.32\,\mathrm{V}\), a change in Gibbs free energy of \(-61830\,\mathrm{J \ mol^{-1}}\), an equilibrium constant of \(4.79 \times 10^{25}\), and a cell potential of \(0.349\,\mathrm{V}\) at \(25^\circ \text{C}\) when \([\mathrm{Zn}^{2+}]=0.10\,\text{M}\) and \([\mathrm{Fe}^{2+}]=1.0\times 10^{-5}\,\text{M}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Balance the following oxidation–reduction reactions that occur in acidic solution using the half-reaction method. a. $\mathrm{Cr}(s)+\mathrm{NO}_{3}^{-}(a q) \rightarrow \mathrm{Cr}^{3+}(a q)+\mathrm{NO}(g)$ b. $\mathrm{CH}_{3} \mathrm{OH}(a q)+\mathrm{Ce}^{4+}(a q) \rightarrow \mathrm{CO}_{2}(a q)+\mathrm{Ce}^{3+}(a q)$ c. $\mathrm{SO}_{3}^{2-}(a q)+\mathrm{MnO}_{4}^{-}(a q) \rightarrow \mathrm{SO}_{4}^{2-}(a q)+\mathrm{Mn}^{2+}(a q)$

An electrochemical cell consists of a silver metal electrode immersed in a solution with \(\left[\mathrm{Ag}^{+}\right]=1.00 M\) separated by a porous disk from a compartment with a copper metal electrode immersed in a solution of 10.00\(M \mathrm{NH}_{3}\) that also contains $2.4 \times 10^{-3} \mathrm{M} \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+} .$ The equilibrium between \(\mathrm{Cu}^{2+}\) and \(\mathrm{NH}_{3}\) is: $$\mathrm{Cu}^{2+}(\mathrm{aq})+4 \mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(\mathrm{aq}) \qquad K=1.0 \times 10^{13}$$ and the two cell half-reactions are: $$\begin{array}{rl}{\mathrm{Ag}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}} & {\mathscr{E}^{\circ}=0.80 \mathrm{V}} \\ {\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}} & {\mathscr{E}^{\circ}=0.34 \mathrm{V}}\end{array}$$ Assuming \(\mathrm{Ag}^{+}\) is reduced, what is the cell potential at \(25^{\circ} \mathrm{C} ?\)

The general rule for salt bridges is that anions flow to the anode and cations flow to the cathode. Explain why this is true.

When jump-starting a car with a dead battery, the ground jumper should be attached to a remote part of the engine block. Why?

What is electrochemistry? What are redox reactions? Explain the difference between a galvanic and an electrolytic cell.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free