One of the classic methods for the determination of the manganese content in steel involves converting all the manganese to the deeply colored permanganate ion and then measuring the absorption of light. The steel is first dissolved in nitric acid, producing the manganese(II) ion and nitrogen dioxide gas. This solution is then reacted with an acidic solution containing periodate ion; the products are the permanganate and iodate ions. Write balanced chemical equations for both of these steps.

Short Answer

Expert verified
The balanced chemical equations for determining the manganese content in steel are: 1. \(Mn(s) + 2 \ HNO_{3}(aq) \rightarrow Mn^{2+}(aq) + 2 \ NO_{2}(g) + 2 \ H^{+}(aq) \) 2. \(5 \ Mn^{2+}(aq) + 12 \ IO_{4}^{-}(aq) + 16 \ H^{+}(aq) \rightarrow 5 \ MnO_{4}^{-}(aq) + 12 \ IO_{3}^{-}(aq) + 8 \ H_{2}O(l) \)

Step by step solution

01

Identify the chemical formulas

First, let us determine the chemical formulas for all the species involved in both reactions: 1. Steel: Primarily composed of Iron (Fe) and Manganese (Mn). 2. Nitric acid: HNO3 3. Manganese(II) ion: Mn^(2+) 4. Nitrogen dioxide gas: NO2 5. Periodate ion: IO4^(-) 6. Acidic solution: H+ ions are present, usually from a strong acid like H2SO4 or HCl. 7. Permanganate ion: MnO4^(-) 8. Iodate ion: IO3^(-) Now that we have the chemical formulas, we can write the unbalanced equations.
02

Write the unbalanced chemical equations

For the first reaction, Manganese in steel + Nitric acid -> Manganese(II) ion + Nitrogen dioxide gas Mn(s) + HNO3(aq) -> Mn^(2+)(aq) + NO2(g) For the second reaction, Manganese(II) ion + Periodate ion + Acidic solution -> Permanganate ion + Iodate ion Mn^(2+)(aq) + IO4^(-)(aq) + H+(aq) -> MnO4^(-)(aq) + IO3^(-)(aq)
03

Balance the chemical equations

Balance the first chemical equation: \(Mn(s) + 2 \ HNO_{3}(aq) \rightarrow Mn^{2+}(aq) + 2 \ NO_{2}(g) + 2 \ H^{+}(aq) \) Balance the second chemical equation: \(5 \ Mn^{2+}(aq) + 12 \ IO_{4}^{-}(aq) + 16 \ H^{+}(aq) \rightarrow 5 \ MnO_{4}^{-}(aq) + 12 \ IO_{3}^{-}(aq) + 8 \ H_{2}O(l) \) Now we have the balanced chemical equations for determining the manganese content of steel: 1. \(Mn(s) + 2 \ HNO_{3}(aq) \rightarrow Mn^{2+}(aq) + 2 \ NO_{2}(g) + 2 \ H^{+}(aq) \) 2. \(5 \ Mn^{2+}(aq) + 12 \ IO_{4}^{-}(aq) + 16 \ H^{+}(aq) \rightarrow 5 \ MnO_{4}^{-}(aq) + 12 \ IO_{3}^{-}(aq) + 8 \ H_{2}O(l) \)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The CrF_ \(4-\) ion is known to have four unpaired electrons. Does the \(\mathrm{F}^{-}\) ligand produce a strong or weak field?

Name the following complex ions. a. \(\operatorname{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}^{2+}\) b. \(\mathrm{Fe}(\mathrm{CN})_{6}^{4-}\) c. $\mathrm{Mn}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}^{2+}$ d. \(\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{55} \mathrm{NO}_{2}^{2+}\) e. \(\mathrm{Ni}(\mathrm{CN})_{4}^{2-}\) f. \(\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}^{+}\) g. \(\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}^{3-}\) h. $\mathrm{Co}(\mathrm{SCN})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}^{+}$

A metal ion in a high-spin octahedral complex has two more unpaired electrons than the same ion does in a low-spin octahedral complex. Name some possible metal ions for which this would be true.

What is the electron configuration for the transition metal ion(s) in each of the following compounds? a. $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}_{4}\right]$ b. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2}\right] \mathrm{I}_{2}$ c. \(\mathrm{Na}_{2}\left[\mathrm{TaF}_{7}\right]\) d. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{I}_{2}\right]\left[\mathrm{PtI}_{4}\right]$ Pt forms \(+2\) and \(+4\) oxidation states in compounds.

Consider aqueous solutions of the following coordination compounds: $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{I}_{3}, \operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{I}_{4}, \mathrm{Na}_{2} \mathrm{Pt}_{6},$ and \(\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{I}_{3}\) . If aqueous AgNO \(_{3}\) is added to separate beakers containing solutions of each coordination compound, how many moles of AgI will precipitate per mole of transition metal present? Assume that each transition metal ion forms an octahedral complex.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free