Use standard reduction potentials to calculate $\mathscr{C}^{\circ}, \Delta G^{\circ},\( and \)K$ (at 298 K) for the reaction that is used in production of gold: $$2 \mathrm{Au}(\mathrm{CN})_{2}-(a q)+\mathrm{Zn}(s) \longrightarrow 2 \mathrm{Au}(s)+\mathrm{Zn}(\mathrm{CN})_{4}^{2-}(a q)$$ The relevant half-reactions are $$\begin{aligned} \operatorname{Au}(\mathrm{CN})_{2}^{-}+\mathrm{e}^{-} \longrightarrow \mathrm{Au}+2 \mathrm{CN}^{-} & \mathscr{C}^{\circ}=-0.60 \mathrm{V} \\ \mathrm{Zn}(\mathrm{CN})_{4}^{2-}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn}+4 \mathrm{CN}^{-} & \mathscr{C}^{\circ}=-1.26 \mathrm{V} \end{aligned}$$

Short Answer

Expert verified
In summary, for the redox reaction $$2\;\mathrm{Au}(\mathrm{CN})_{2}^{-}+\mathrm{Zn}(s)\longrightarrow 2\;\mathrm{Au}(s)+\mathrm{Zn}(\mathrm{CN})_{4}^{2-},$$ the standard cell potential \(\mathscr{C}^{\circ}\) is 0.66 V, the standard free energy change \(\Delta G^{\circ}\) is -127,640 J/mol, and the equilibrium constant \(K\) at 298 K is approximately \(5.90\times10^{20}\).

Step by step solution

01

Determine the balanced equation for the redox reaction

We are provided with the balanced redox reaction already: $$2\;\mathrm{Au}(\mathrm{CN})_{2}^{-}+\mathrm{Zn}(s)\longrightarrow 2\;\mathrm{Au}(s)+\mathrm{Zn}(\mathrm{CN})_{4}^{2-}$$
02

Calculate the standard cell potential (\(\mathscr{C}^{\circ}\))

First, let's identify the two half-reactions involved. The given reduction half-reactions are: $$\mathrm{Au}(\mathrm{CN})_{2}^{-}+\mathrm{e}^{-}\longrightarrow \mathrm{Au}+2\;\mathrm{CN}^{-}\;\;\;\;\mathscr{C}^{\circ}=-0.60\;\mathrm{V}$$ $$\mathrm{Zn}(\mathrm{CN})_{4}^{2-}+2\;\mathrm{e}^{-}\longrightarrow \mathrm{Zn}+4\;\mathrm{CN}^{-}\;\;\;\;\mathscr{C}^{\circ}=-1.26\;\mathrm{V}$$ For the second equation to match the overall reaction, it must be reversed and turned into an oxidation half-reaction: $$\mathrm{Zn}+4\;\mathrm{CN}^{-} \longrightarrow\mathrm{Zn}(\mathrm{CN})_{4}^{2-}+2\;\mathrm{e}^{-}\;\;\;\;\mathscr{C}^{\circ}=1.26\;\mathrm{V}$$ Now, we can find the standard cell potential by adding the standard reduction potentials of the two half-reactions: $$\mathscr{C}^{\circ}_{\text{cell}}= \mathscr{C}^{\circ}_{\text{red}}+\mathscr{C}^{\circ}_{\text{ox}}= -0.60\;\mathrm{V}+1.26\;\mathrm{V}=0.66\;\mathrm{V}$$
03

Calculate the standard free energy change (\(\Delta G^{\circ}\))

We can calculate the standard free energy change using the standard cell potential: $$\Delta G^{\circ}=-nFE_{\text{cell}}^{\circ}$$ F is the Faraday constant \((96,\!485\;\mathrm{J}\cdot\mathrm{mol}^{-1}\cdot\mathrm{V}^{-1})\), n is the number of transferred electrons (2 in this case), and \(E_{\text{cell}}^{\circ}\, (= \mathscr{C}_{\text{cell}}^{\circ})\) is the standard cell potential. $$\Delta G^{\circ}=-(2\;\text{mol}\;\mathrm{e}^{-})(96,\!485\;\mathrm{J}\cdot\mathrm{mol}^{-1}\cdot\mathrm{V}^{-1})(0.66\;\mathrm{V})=-127,\!640\;\mathrm{J}\cdot\mathrm{mol}^{-1}$$
04

Calculate the equilibrium constant (\(K\))

Finally, we can calculate the equilibrium constant using the following relationship: $$\Delta G^{\circ}=-RT\ln K$$ R is the gas constant \((8.314\;\mathrm{J}\cdot\mathrm{mol}^{-1}\cdot\mathrm{K}^{-1})\), and T is the temperature (298 K). $$K = \exp{\left(-\frac{\Delta G^{\circ}}{RT}\right)}= \exp{\left(-\frac{-127,\!640\;\mathrm{J}\cdot\mathrm{mol}^{-1}}{(8.314\;\mathrm{J}\cdot\mathrm{mol}^{-1}\cdot\mathrm{K}^{-1})(298\;\mathrm{K})}\right)}\approx 5.90\times10^{20}$$ In conclusion, for this redox reaction, the standard cell potential is 0.66 V, the standard free energy change is -127,640 J/mol, and the equilibrium constant is approximately \(5.90\times10^{20}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Ethylenediaminetetraacetate (EDTA \(^{4-} )\) is used as a complexing agent in chemical analysis with the structure shown in Fig. \(21.7 .\) Solutions of EDTA \(^{4-}\) are used to treat heavy metal poisoning by removing the heavy metal in the form of a soluble complex ion. The complex ion virtually prevents the heavy metal ions from reacting with biochemical systems. The reaction of EDTA \(^{4-}\) with \(\mathrm{Pb}^{2+}\) is $$\mathrm{Pb}^{2+}(a q)+\mathrm{EDTA}^{4-(a q)} \rightleftharpoons \mathrm{PbEDTA}^{2-}(a q) \\\ \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad K=1.1 \times 10^{18}$$ Consider a solution with 0.010 mol of \(\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}\) added to 1.0 \(\mathrm{L}\) of an aqueous solution buffered at \(\mathrm{pH}=13.00\) and containing 0.050$M \mathrm{Na}_{4} \mathrm{EDTA} .\( Does \)\mathrm{Pb}(\mathrm{OH})_{2}$ precipitate from this solution? $\left[K_{\mathrm{sp}} \text { for } \mathrm{Pb}(\mathrm{OH})_{2}=1.2 \times 10^{-15}\right]$

Give formulas for the following. a. hexakis(pyridine)cobalt(III) chloride b. pentaammineiodochromium(III) iodide c. tris(ethylenediamine)nickel(II) bromide d. potassium tetracyanonickelate(II) e. tetraamminedichloroplatinum(IV) tetrachloroplatinate(II)

Consider the pseudo-octahedral complex ion of \(\mathrm{Cr}^{3+}\) , where A and \(\mathrm{B}\) represent ligands. Ligand A produces a stronger crystal field than ligand B. Draw an appropriate crystal field diagram for this complex ion (assume the A ligands are on the \(z\) -axis).

The complex ion \(\mathrm{PdCl}_{4}^{2-}\) is diamagnetic. Propose a structure for \(\mathrm{PdCl}_{4}^{2-}\).

Write electron configurations for the following transition metals. a. Sc b. Ru c. Ir d. Mn

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free