Using the general solubility rules given in Table 4.1, name three reagents that would form precipitates with each of the following ions in aqueous solution. Write the net ionic equation for each of your suggestions. a. chloride ion \(\quad\) d. sulfate ion b. calcium ion \(\quad\) e. mercury \((1)\) ion, \(\mathrm{Hg}_{2}^{2+}\) c. iron(M) ion \(\quad\) f. silver ion

Short Answer

Expert verified
a. Chloride ion: 1. \(Ag^+ + Cl^- \rightarrow AgCl(s)\) 2. \(Pb^{2+} + 2Cl^- \rightarrow PbCl_2(s)\) 3. \(Hg^{2+} + 2Cl^- \rightarrow HgCl_2(s)\) b. Calcium ion: 1. \(Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3(s)\) 2. \(Ca^{2+} + SO_4^{2-} \rightarrow CaSO_4(s)\) 3. \(Ca^{2+} + C_2O_4^{2-} \rightarrow CaC_2O_4(s)\) c. Iron(II) ion: 1. \(Fe^{2+} + 2OH^- \rightarrow Fe(OH)_2(s)\) 2. \(Fe^{2+} + CO_3^{2-} \rightarrow FeCO_3(s)\) 3. \(Fe^{2+} + SCN^- \rightarrow FeSCN(s)\) d. Sulfate ion: 1. \(Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4(s)\) 2. \(Pb^{2+} + SO_4^{2-} \rightarrow PbSO_4(s)\) 3. \(Ca^{2+} + SO_4^{2-} \rightarrow CaSO_4(s)\) e. Mercury(I) ion, \(\mathrm{Hg}_{2}^{2+}\): 1. \[\mathrm{Hg}_{2}^{2+} + 2Cl^- \rightarrow \mathrm{Hg}_2Cl_2(s)\] 2. \[\mathrm{Hg}_{2}^{2+} + 2I^- \rightarrow \mathrm{Hg}_2I_2(s)\] 3. \[\mathrm{Hg}_{2}^{2+} + S^{2-} \rightarrow \mathrm{Hg}_2S(s)\] f. Silver ion: 1. \(Ag^+ + Cl^- \rightarrow AgCl(s)\) 2. \(Ag^+ + Br^- \rightarrow AgBr(s)\) 3. \(Ag^+ + I^- \rightarrow AgI(s)\)

Step by step solution

01

a. Chloride ion

Three reagents that will form precipitates with chloride ion are: 1. Silver nitrate (AgNO₃) 2. Lead(II) nitrate (Pb(NO₃)₂) 3. Mercury(II) nitrate (Hg(NO₃)₂) Net ionic equations: 1. \[Ag^+ + Cl^- \rightarrow AgCl(s)\] 2. \[Pb^{2+} + 2Cl^- \rightarrow PbCl_2(s)\] 3. \[Hg^{2+} + 2Cl^- \rightarrow HgCl_2(s)\]
02

b. Calcium ion

Three reagents that will form precipitates with calcium ion are: 1. Sodium carbonate (Na₂CO₃) 2. Potassium sulfate (K₂SO₄) 3. Sodium oxalate (Na₂C₂O₄) Net ionic equations: 1. \[Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3(s)\] 2. \[Ca^{2+} + SO_4^{2-} \rightarrow CaSO_4(s)\] 3. \[Ca^{2+} + C_2O_4^{2-} \rightarrow CaC_2O_4(s)\]
03

c. Iron(II) ion

Three reagents that will form precipitates with iron(II) ion are: 1. Potassium hydroxide (KOH) 2. Sodium carbonate (Na₂CO₃) 3. Potassium thiocyanate (KSCN) Net ionic equations: 1. \[Fe^{2+} + 2OH^- \rightarrow Fe(OH)_2(s)\] 2. \[Fe^{2+} + CO_3^{2-} \rightarrow FeCO_3(s)\] 3. \[Fe^{2+} + SCN^- \rightarrow FeSCN(s)\]
04

d. Sulfate ion

Three reagents that will form precipitates with sulfate ion are: 1. Barium chloride (BaCl₂) 2. Lead(II) nitrate (Pb(NO₃)₂) 3. Calcium nitrate (Ca(NO₃)₂) Net ionic equations: 1. \[Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4(s)\] 2. \[Pb^{2+} + SO_4^{2-} \rightarrow PbSO_4(s)\] 3. \[Ca^{2+} + SO_4^{2-} \rightarrow CaSO_4(s)\]
05

e. Mercury(I) ion, \(\mathrm{Hg}_{2}^{2+}\)

Three reagents that will form precipitates with mercury(I) ion are: 1. Sodium chloride (NaCl) 2. Potassium iodide (KI) 3. Sodium sulfide (Na₂S) Net ionic equations: 1. \[\mathrm{Hg}_{2}^{2+} + 2Cl^- \rightarrow \mathrm{Hg}_2Cl_2(s)\] 2. \[\mathrm{Hg}_{2}^{2+} + 2I^- \rightarrow \mathrm{Hg}_2I_2(s)\] 3. \[\mathrm{Hg}_{2}^{2+} + S^{2-} \rightarrow \mathrm{Hg}_2S(s)\]
06

f. Silver ion

Three reagents that will form precipitates with silver ion are: 1. Sodium chloride (NaCl) 2. Potassium bromide (KBr) 3. Sodium iodide (NaI) Net ionic equations: 1. \[Ag^+ + Cl^- \rightarrow AgCl(s)\] 2. \[Ag^+ + Br^- \rightarrow AgBr(s)\] 3. \[Ag^+ + I^- \rightarrow AgI(s)\]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A solution is prepared by dissolving 0.6706 g oxalic acid \(\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)\) in enough water to make 100.0 \(\mathrm{mL}\) of solution. A 10.00-mL aliquot (portion) of this solution is then diluted to a final volume of 250.0 mL. What is the final molarity of the oxalic acid solution?

Specify which of the following equations represent oxidation– reduction reactions, and indicate the oxidizing agent, the reducing agent, the species being oxidized, and the species being reduced a. $\mathrm{CH}_{4}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightarrow \mathrm{CO}(g)+3 \mathrm{H}_{2}(g)$ b. $2 \mathrm{AgNO}_{3}(a q)+\mathrm{Cu}(s) \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{Ag}(s)$ c. $\mathrm{Zn}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{ZnCl}_{2}(a q)+\mathrm{H}_{2}(g)$ d. $2 \mathrm{H}^{+}(a q)+2 \mathrm{CrO}_{4}^{2-}(a q) \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$

What mass of iron(III) hydroxide precipitate can be produced by reacting 75.0 mL of 0.105 M iron(III) nitrate with 125 mL of 0.150 M sodium hydroxide?

A solution of permanganate is standardized by titration with oxalic acid \(\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right) .\) It required 28.97 \(\mathrm{mL}\) of the permanganate solution to react completely with 0.1058 g of oxalic acid. The unbalanced equation for the reaction is $$\mathrm{MnO}_{4}^{-}(a q)+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q) \stackrel{\mathrm{Acidic}}{\longrightarrow} \mathrm{Mn}^{2+}(a q)+\mathrm{CO}_{2}(g)$$ What is the molarity of the permanganate solution?

Consider an experiment in which two burets, Y and Z, are simultaneously draining into a beaker that initially contained 275.0 mL of 0.300 M HCl. Buret Y contains 0.150 M NaOH and buret Z contains 0.250 M KOH. The stoichiometric point in the titration is reached 60.65 minutes after Y and Z were started simultaneously. The total volume in the beaker at the stoichiometric point is 655 mL. Calculate the flow rates of burets Y and Z. Assume the flow rates remain constant during the experiment.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free