Balance the following oxidation–reduction reactions that occur in basic solution. a. $\mathrm{Al}(s)+\mathrm{MnO}_{4}^{-}(a q) \rightarrow \mathrm{MnO}_{2}(s)+\mathrm{Al}(\mathrm{OH})_{4}-(a q)$ b. \(\mathrm{Cl}_{2}(g) \rightarrow \mathrm{Cl}^{-}(a q)+\mathrm{OCl}^{-}(a q)\) c. $\mathrm{NO}_{2}^{-}(a q)+\mathrm{Al}(s) \rightarrow \mathrm{NH}_{3}(g)+\mathrm{AlO}_{2}^{-}(a q)$

Short Answer

Expert verified
The balanced redox reactions in basic solutions are: a. \(\mathrm{Al}(s)+ \mathrm{MnO}_{4}^{-}(a q) + 2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{MnO}_{2}(s) + \mathrm{Al}(\mathrm{OH})_{4}^{-}(a q)\) b. \(\mathrm{Cl}_{2}(g) + 2\mathrm{OH}^{-}(a q) \rightarrow \mathrm{Cl}^{-}(a q)+\mathrm{OCl}^{-}(a q) + \mathrm{H}_{2}\mathrm{O}(l)\) c. \(4\mathrm{Al}(s) +6\mathrm{NO}_{2}^{-}(a q) +18\mathrm{H}_{2}\mathrm{O}(l) \rightarrow 6\mathrm{NH}_{3}(g)+ 4\mathrm{AlO}_{2}^{-}(a q) +12\mathrm{OH}^{-}(a q)\)

Step by step solution

01

Step 1-3: Identify half-reactions and balance atoms other than Hydrogen and Oxygen

Oxidation half-reaction: \(\mathrm{Al}(s) \rightarrow \mathrm{Al}(\mathrm{OH})_{4}^{-}(a q)\) Reduction half-reaction: \(\mathrm{MnO}_{4}^{-}(a q) \rightarrow \mathrm{MnO}_{2}(s)\) Notice that the Aluminum and Manganese atoms are already balanced.
02

Balance Oxygen and Hydrogen

Oxidation half-reaction (Balanced): \(\mathrm{Al}(s) \rightarrow \mathrm{Al}(\mathrm{OH})_{4}^{-}(a q)\) Reduction half-reaction (Balanced): \(\mathrm{MnO}_{4}^{-}(a q) + 2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{MnO}_{2}(s) + 4\mathrm{OH}^{-}(a q)\)
03

Balance charges by adding electrons

Oxidation half-reaction (Balanced): \(\mathrm{Al}(s) \rightarrow \mathrm{Al}(\mathrm{OH})_{4}^{-}(a q) + 3\mathrm{e}^{-}\) Reduction half-reaction (Balanced): \(3\mathrm{e}^{-} + \mathrm{MnO}_{4}^{-}(a q) + 2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{MnO}_{2}(s) + 4\mathrm{OH}^{-}(a q)\)
04

Combine half-reactions

Overall equation (Balanced): \(\mathrm{Al}(s)+ \mathrm{MnO}_{4}^{-}(a q) + 2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{MnO}_{2}(s) + \mathrm{Al}(\mathrm{OH})_{4}^{-}(a q)\) b. \(\mathrm{Cl}_{2}(g) \rightarrow \mathrm{Cl}^{-}(a q)+\mathrm{OCl}^{-}(a q)\) Following the same steps for this reaction: Oxidation half-reaction (Balanced): \(\mathrm{Cl}^{-}(a q) \rightarrow \mathrm{OCl}^{-}(a q)+2\mathrm{e}^{-}\) Reduction half-reaction (Balanced): \(\mathrm{Cl}_{2}(g) + 2\mathrm{e}^{-} \rightarrow 2\mathrm{Cl}^{-}(a q)\) Overall equation (Balanced): \(\mathrm{Cl}_{2}(g) + 2\mathrm{OH}^{-}(a q) \rightarrow \mathrm{Cl}^{-}(a q)+\mathrm{OCl}^{-}(a q) + \mathrm{H}_{2}\mathrm{O}(l)\) c. \(\mathrm{NO}_{2}^{-}(a q)+\mathrm{Al}(s) \rightarrow \mathrm{NH}_{3}(g)+\mathrm{AlO}_{2}^{-}(a q)\) Following the same steps for this reaction: Oxidation half-reaction (Balanced): \(\mathrm{Al}(s) \rightarrow \mathrm{AlO}_{2}^{-}(a q)+3\mathrm{e}^{-}\) Reduction half-reaction (Balanced): \(6\mathrm{NO}_{2}^{-}(a q) + 18\mathrm{H}_{2}\mathrm{O}(l) + 12\mathrm{e}^{-} \rightarrow 6\mathrm{NH}_{3}(g)+12\mathrm{OH}^{-}(a q)\) Note that we need to multiply the oxidation half-reaction by 4 to equalize the number of electrons in both half-reactions: Overall equation (Balanced): \(4\mathrm{Al}(s) +6\mathrm{NO}_{2}^{-}(a q) +18\mathrm{H}_{2}\mathrm{O}(l) \rightarrow 6\mathrm{NH}_{3}(g)+ 4\mathrm{AlO}_{2}^{-}(a q) +12\mathrm{OH}^{-}(a q)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider an experiment in which two burets, Y and Z, are simultaneously draining into a beaker that initially contained 275.0 mL of 0.300 M HCl. Buret Y contains 0.150 M NaOH and buret Z contains 0.250 M KOH. The stoichiometric point in the titration is reached 60.65 minutes after Y and Z were started simultaneously. The total volume in the beaker at the stoichiometric point is 655 mL. Calculate the flow rates of burets Y and Z. Assume the flow rates remain constant during the experiment.

Assign oxidation numbers to all the atoms in each of the following. a. \(\mathrm{SrCr}_{2} \mathrm{O}_{7} \quad\) g. \(\mathrm{PbSO}_{3}\) b. \(\mathrm{CuCl}_{2} \quad \quad\) h. \(\mathrm{PbO}_{2}\) c. \(\mathrm{O}_{2} \quad\quad\quad\) i. $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ d. \(\mathrm{H}_{2} \mathrm{O}_{2} \quad\quad \mathrm{j} . \mathrm{CO}_{2}\) e. \(\mathrm{MgCO}_{3} \quad\) k. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{3}$ f. \(\mathrm{Ag} \quad\quad\quad \)l. \(\mathrm{Cr}_{2} \mathrm{O}_{3}\)

For the following chemical reactions, determine the precipitate produced when the two reactants listed below are mixed together. Indicate “none” if no precipitate will form $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}(a q)+\mathrm{K}_{3} \mathrm{PO}_{4}(a q) \longrightarrow$__________________(s) $\mathrm{K}_{2} \mathrm{CO}_{3}(a q)+\mathrm{AgNO}_{3}(a q) \longrightarrow$__________________(s) $\mathrm{NaCl}(a q)+\mathrm{KNO}_{3}(a q) \longrightarrow$__________________(s) $\mathrm{KCl}(a q)+\mathrm{AgNO}_{3}(a q) \longrightarrow$__________________(s) $\mathrm{FeCl}_{3}(a q)+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q) \longrightarrow$__________________(s)

Consider reacting copper(II) sulfate with iron. Two possible reactions can occur, as represented by the following equations. $$\operatorname{copper}(\mathrm{II}) \text { sulfate }(a q)+\mathrm{iron}(s) \longrightarrow (s)+\operatorname{iron}(\mathrm{II}) \text { sulfate }(a q)$$ $$\operatorname{copper}(\mathrm{II}) \text { sulfate }(a q)+\mathrm{iron}(s) \longrightarrow (s)+\text { iron (III) sulfate }(a q) $$ You place 87.7 mL of a 0.500-M solution of copper(II) sulfate in a beaker. You then add 2.00 g of iron filings to the copper(II) sulfate solution. After one of the above reactions occurs, you isolate 2.27 g of copper. Which equation above describes the reaction that occurred? Support your answer

A 50.00 -mL sample of solution containing \(\mathrm{Fe}^{2+}\) ions is titrated with a 0.0216 \(\mathrm{M} \mathrm{KMnO}_{4}\) solution. It required 20.62 \(\mathrm{mL}\) of \(\mathrm{KMnO}_{4}\) solution to oxidize all the \(\mathrm{Fe}^{2+}\) ions to \(\mathrm{Fe}^{3+}\) ions by the reaction $$\mathrm{MnO}_{4}^{-}(a q)+\mathrm{Fe}^{2+}(a q) \stackrel{\text { Acidic }}{\longrightarrow} \mathrm{Mn}^{2+}(a q)+\mathrm{Fe}^{3+}(a q) \text{(Unbalanced)} $$ a. What was the concentration of \(\mathrm{Fe}^{2+}\) ions in the sample solution? b. What volume of 0.0150\(M \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\) solution would it take to do the same titration? The reaction is $$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+\mathrm{Fe}^{2+}(a q) \stackrel{\mathrm{Acidic}}{\longrightarrow} \mathrm{Cr}^{3+}(a q) +\mathrm{Fe}^{3+}(a q) \text {(Unbalanced)} $$

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free