Nitromethane, \(\mathrm{CH}_{3} \mathrm{NO}_{2},\) can be used as a fuel. When the liquid is burned, the (unbalanced) reaction is mainly $$ \mathrm{CH}_{3} \mathrm{NO}_{2}(l)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{N}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g) $$ a. The standard enthalpy change of reaction $\left(\Delta H_{\mathrm{rxn}}^{\circ}\right)$ for the balanced reaction (with lowest whole-number coefficients \()\) is $-1288.5 \mathrm{kJ} .\( Calculate \)\Delta H_{\mathrm{f}}^{\circ}$ for nitromethane. b. A 15.0 -L flask containing a sample of nitromethane is filled with \(\mathrm{O}_{2}\) and the flask is heated to \(100 .^{\circ} \mathrm{C}\) . At this temperature, and after the reaction is complete, the total pressure of all the gases inside the flask is 950 . torr. If the mole fraction of nitrogen \(\left(\chi_{\text { nitrogen }}\right)\) is 0.134 after the reaction is complete, what mass of nitrogen was produced?

Short Answer

Expert verified
The standard enthalpy of formation for nitromethane is: $$ \Delta H_{\mathrm{f\ of\ Nitromethane}}^{\circ} = 1288.5 - (-393.5 +0+ 2 \times (-241.8))\,\text{kJ} = 25.6\, \text{kJ} $$ The mass of nitrogen produced in the reaction is given by: $$ \text{Mass of}\, \mathrm{N}_{2} = n_{\mathrm{N}_{2}}\times (28.02\, \text{g/mol}) = \frac{(P_{\mathrm{N}_{2}}\,\text{torr})(15.0\,\text{L})}{(62.364\,\text{L\ mmHg/mol\ K})(373\,\text{K})} \times (28.02\, \text{g/mol}) $$ Substituting the values, we get: $$ \text{Mass of}\, \mathrm{N}_{2} = \frac{(950\,\text{torr})(0.134)(15.0\,\text{L})}{(62.364\,\text{L\ mmHg/mol\ K})(373\,\text{K})} \times (28.02\, \text{g/mol}) = 10.7\, \text{g} $$

Step by step solution

01

1. Balance the chemical equation

First, we need to balance the chemical equation, so that we can find the coefficients of the reactants and products: $$ \mathrm{CH}_{3} \mathrm{NO}_{2}(l)+\frac{3}{2}\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{N}_{2}(g)+2\mathrm{H}_{2} \mathrm{O}(g) $$ So the balanced equation is: $$ \mathrm{CH}_{3} \mathrm{NO}_{2}(l)+\frac{3}{2}\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{N}_{2}(g)+2\mathrm{H}_{2} \mathrm{O}(g) $$
02

a. Calculate standard enthalpy of formation for nitromethane

We know that for any reaction, $$ \Delta H_{\mathrm{rxn}}^{\circ} = \sum \Delta H_{\mathrm{f\ of\ products}}^{\circ} - \sum \Delta H_{\mathrm{f\ of\ reactants}}^{\circ} $$ Rearranging the equation to find \(\Delta H_{\mathrm{f\ of\ Nitromethane}}^{\circ}\), $$ \Delta H_{\mathrm{f\ of\ Nitromethane}}^{\circ} = -\Delta H_{\mathrm{rxn}}^{\circ} + \sum \Delta H_{\mathrm{f\ of\ products}}^{\circ} - \Delta H_{\mathrm{f\ of\ O}_{2}}^{\circ} $$ Since the standard enthalpy of formation for oxygen (\(\mathrm{O}_{2}\)) is zero, we get: $$ \Delta H_{\mathrm{f\ of\ Nitromethane}}^{\circ} = -\Delta H_{\mathrm{rxn}}^{\circ} + \sum \Delta H_{\mathrm{f\ of\ products}}^{\circ} $$ We can find the sum of the standard enthalpy of formation for the products \(\left(\sum \Delta H_{\mathrm{f\ of\ products}}^{\circ}\right)\) by looking up their values in a reference or using a standard enthalpy table: $$ \sum \Delta H_{\mathrm{f\ of\ products}}^{\circ} = \Delta H_{\mathrm{f\ of\ CO}_{2}}^{\circ} + \Delta H_{\mathrm{f\ of\ N}_{2}}^{\circ} + 2 \Delta H_{\mathrm{f\ of\ H}_{2}\mathrm{O}}^{\circ} = (-393.5 + 0 + 2 \times (-241.8))\,\text{kJ} $$ Now, we can plug in the values to find the standard enthalpy of formation for nitromethane: $$ \Delta H_{\mathrm{f\ of\ Nitromethane}}^{\circ} = -(-1288.5) + \sum \Delta H_{\mathrm{f\ of\ products}}^{\circ} = 1288.5 - (-393.5 +0+ 2 \times (-241.8))\,\text{kJ} $$
03

2. Calculate mass of nitrogen produced in the reaction

First, let's determine the partial pressure of nitrogen in the flask: Partial pressure of nitrogen = Total pressure × Mole fraction of nitrogen $$ P_{\mathrm{N}_{2}} = (950\,\text{torr})(0.134) $$ Next, we need to convert the partial pressure of nitrogen into moles using the ideal gas law equation, \(PV = nRT\). Make sure to convert all units to the correct SI units: $$ n_{\mathrm{N}_{2}} = \frac{P_{\mathrm{N}_{2}}V}{RT} = \frac{(P_{\mathrm{N}_{2}}\,\text{torr})(15.0\,\text{L})}{(62.364\,\text{L\ mmHg/mol\ K})(373\,\text{K})} $$ Then, we can find the mass of nitrogen produced, using its molar mass: $$ \text{Mass of}\, \mathrm{N}_{2} = n_{\mathrm{N}_{2}}\times M_{\mathrm{N}_{2}} = n_{\mathrm{N}_{2}}\times (28.02\, \text{g/mol}) $$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free