Given the following data $$ \begin{aligned} \mathrm{P}_{4}(s)+6 \mathrm{Cl}_{2}(g) \longrightarrow 4 \mathrm{PCl}_{3}(g) & \Delta H=-1225.6 \mathrm{kJ} \\ \mathrm{P}_{4}(s)+5 \mathrm{O}_{2}(g) \longrightarrow \mathrm{P}_{4} \mathrm{O}_{10}(s) & \Delta H=-2967.3 \mathrm{kJ} \end{aligned} $$ $$ \begin{array}{cc}{\mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) \longrightarrow \mathrm{PCl}_{5}(g)} & {\Delta H=-84.2 \mathrm{kJ}} \\\ {\mathrm{PCl}_{3}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{Cl}_{3} \mathrm{PO}(g)} & {\Delta H=-285.7 \mathrm{kJ}}\end{array} $$ calculate \(\Delta H\) for the reaction $$ \mathrm{P}_{4} \mathrm{O}_{10}(s)+6 \mathrm{PCl}_{5}(g) \longrightarrow 10 \mathrm{Cl}_{3} \mathrm{PO}(g) $$

Short Answer

Expert verified
The enthalpy change for the reaction \(\mathrm{P_{4}O_{10}(s) + 6 \mathrm{PCl}_{5}(g) \longrightarrow 10 \mathrm{Cl}_{3} \mathrm{PO}(g)\) is \(\Delta H_{target} = -4470.7 \,\mathrm{kJ}\).

Step by step solution

01

1. Identify the target reaction

The target reaction we want to find the enthalpy change for is: \( \mathrm{P}_{4} \mathrm{O}_{10}(s) + 6 \mathrm{PCl}_{5}(g) \longrightarrow 10 \mathrm{Cl}_{3} \mathrm{PO}(g) \)
02

2. Manipulate the given reactions to match the target reaction

First, let's work with the second given reaction (\( \mathrm{P}_{4}(s) + 5 \mathrm{O}_{2}(g) \longrightarrow \mathrm{P}_{4} \mathrm{O}_{10}(s) \)), as it is the only one with the P4O10 compound. Since the target reaction begins with 1 P4O10, we keep the second reaction the same and not need to manipulate it: \( \mathrm{P}_{4}(s) + 5 \mathrm{O}_{2}(g) \longrightarrow \mathrm{P}_{4} \mathrm{O}_{10}(s) \, (\Delta H_2 = -2967.3 \,\mathrm{kJ}) \) Now, let's look at the first given reaction (\( \mathrm{P}_{4}(s) + 6 \mathrm{Cl}_{2}(g) \longrightarrow 4 \mathrm{PCl}_{3}(g) \)). To get 6 PCl5 in our target reaction, we will need to reverse this first given reaction and multiply it by 1.5. This gives: \( 6 \mathrm{PCl}_{3}(g) \longrightarrow \mathrm{P}_{4}(s) + 9 \mathrm{Cl}_{2}(g) \, (-1.5\cdot \Delta H_1 = 1.5 \cdot 1225.6 \,\mathrm{kJ}) \) Next, let's work with the third given reaction (\( \mathrm{PCl}_{3}(g) + \mathrm{Cl}_{2}(g) \longrightarrow \mathrm{PCl}_{5}(g) \)). Since we reversed the first given reaction and obtained 6 PCl3 in it, we'll reverse this reaction also and multiply it by 6: \( 6 \mathrm{PCl}_{5}(g) \longrightarrow 6 \mathrm{PCl}_{3}(g) + 6 \mathrm{Cl}_{2}(g) \, (-6 \cdot \Delta H_3 = 6 \cdot 84.2 \, \mathrm{kJ}) \) Lastly, for the fourth given reaction (\( \mathrm{PCl}_{3}(g) + \frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{Cl}_{3} \mathrm{PO}(g) \)), we need 10 Cl3PO in our target reaction. So, we'll multiply it by 10: \( 10 \mathrm{PCl}_{3}(g) + 5 \mathrm{O}_{2}(g) \longrightarrow 10 \mathrm{Cl}_{3} \mathrm{PO}(g) \, (10 \cdot \Delta H_4 = 10 \cdot-285.7 \, \mathrm{kJ}) \)
03

3. Add the manipulated reactions

Now, let's add all the manipulated reactions together: \( 6 \mathrm{PCl}_{3}(g) \longrightarrow \mathrm{P}_{4}(s) + 9 \mathrm{Cl}_{2}(g) \, (1.5 \cdot 1225.6 \,\mathrm{kJ}) \) \( \mathrm{P}_{4}(s) + 5 \mathrm{O}_{2}(g) \longrightarrow \mathrm{P}_{4} \mathrm{O}_{10}(s) \, (-2967.3 \,\mathrm{kJ}) \) \( 6 \mathrm{PCl}_{5}(g) \longrightarrow 6 \mathrm{PCl}_{3}(g) + 6 \mathrm{Cl}_{2}(g) \, (6 \cdot 84.2 \,\mathrm{kJ}) \) \( 10 \mathrm{PCl}_{3}(g) + 5 \mathrm{O}_{2}(g) \longrightarrow 10 \mathrm{Cl}_{3} \mathrm{PO}(g) \, (10 \cdot -285.7 \, \mathrm{kJ}) \) -------------------------------------------------------------------------------------------- \( \mathrm{P}_{4} \mathrm{O}_{10}(s) + 6 \mathrm{PCl}_{5}(g) \longrightarrow 10 \mathrm{Cl}_{3} \mathrm{PO}(g) \, (\Delta H_{target}) \)
04

4. Calculate the enthalpy change for the target reaction

Now, we can sum up the enthalpy changes from the manipulated reactions to find the enthalpy change for the target reaction: \( \Delta H_{target} = 1.5 \cdot 1225.6 - 2967.3 + 6 \cdot 84.2 + 10 \cdot (-285.7) \) \( \Delta H_{target} = 1838.4 - 2967.3 + 505.2 - 2857 \) \( \Delta H_{target} = -4470.7 \, \mathrm{kJ} \) The enthalpy change for the target reaction is -4470.7 kJ.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Hydrogen gives off \(120 . \mathrm{J} / \mathrm{g}\) of energy when burned in oxygen, and methane gives off \(50 . \mathrm{J} / \mathrm{g}\) under the same circumstances. If a mixture of 5.0 \(\mathrm{g}\) hydrogen and \(10 . \mathrm{g}\) methane is burned, and the heat released is transferred to 50.0 \(\mathrm{g}\) water at \(25.0^{\circ} \mathrm{C},\) what final temperature will be reached by the water?

A biology experiment requires the preparation of a water bath at $37.0^{\circ} \mathrm{C}$ (body temperature). The temperature of the cold tap water is \(22.0^{\circ} \mathrm{C},\) and the temperature of the hot tap water is \(55.0^{\circ} \mathrm{C} .\) If a student starts with 90.0 \(\mathrm{g}\) cold water, what mass of hot water must be added to reach $37.0^{\circ} \mathrm{C} ?$

The bomb calorimeter in Exercise 112 is filled with 987 \(\mathrm{g}\) water. The initial temperature of the calorimeter contents is $23.32^{\circ} \mathrm{C} .\( A \)1.056-\mathrm{g}\( sample of benzoic acid \)\left(\Delta E_{\mathrm{comb}}=\right.\( \)-26.42 \mathrm{kJ} / \mathrm{g}$ ) is combusted in the calorimeter. What is the final temperature of the calorimeter contents?

The combustion of 0.1584 g benzoic acid increases the temperature of a bomb calorimeter by \(2.54^{\circ} \mathrm{C}\) . Calculate the heat capacity of this calorimeter. (The energy released by combustion of benzoic acid is 26.42 \(\mathrm{kJ} / \mathrm{g} .\) ) A \(0.2130-\mathrm{g}\) sample of vanillin \(\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}\right)\) is then burned in the same calorimeter, and the temperature increases by $3.25^{\circ} \mathrm{C}$ . What is the energy of combustion per gram of vanillin? Per mole of vanillin?

The enthalpy change for the reaction $$ \mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) $$ is \(-891 \mathrm{kJ}\) for the reaction as written. a. What quantity of heat is released for each mole of water formed? b. What quantity of heat is released for each mole of oxygen reacted?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free