Chapter 13: Problem 31
Define activation energy. What role does activation energy play in chemical kinetics?
Chapter 13: Problem 31
Define activation energy. What role does activation energy play in chemical kinetics?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the reaction $$ \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g) $$ Suppose that at a particular moment during the reaction molecular hydrogen is reacting at the rate of \(0.074 M / \mathrm{s}\). (a) At what rate is ammonia being formed? (b) At what rate is molecular nitrogen reacting?
The bromination of acetone is acid-catalyzed: \(\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{Br}_{2} \frac{\mathrm{H}^{+}}{\text {cually }} \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{Br}+\mathrm{H}^{+}+\mathrm{Br}^{-}\) The rate of disappearance of bromine was measured for several different concentrations of acetone, bromine, and \(\mathrm{H}^{+}\) ions at a certain temperature: $$ \begin{array}{lclll} \hline & &{\text { Rate of }} \\ & & & & \text { Disappearance } \\ & {\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]} & {\left[\mathrm{Br}_{2}\right]} & {\left[\mathrm{H}^{+}\right]} & \text {of } \mathrm{Br}_{2}(M / \mathrm{s}) \\ \hline(1) & 0.30 & 0.050 & 0.050 & 5.7 \times 10^{-5} \\ (2) & 0.30 & 0.10 & 0.050 & 5.7 \times 10^{-5} \\ (3) & 0.30 & 0.050 & 0.20 & 1.2 \times 10^{-4} \\ (4) & 0.40 & 0.050 & 0.20 & 3.1 \times 10^{-4} \\ (5) & 0.40 & 0.050 & 0.050 & 7.6 \times 10^{-5} \\ \hline \end{array} $$ (a) What is the rate law for the reaction? (b) Determine the rate constant. (c) The following mechanism has been proposed for the reaction: Show that the rate law deduced from the mechanism is consistent with that shown in (a).
How does a catalyst increase the rate of a reaction?
The rate law for the reaction \(2 \mathrm{H}_{2}(g)+2 \mathrm{NO}(g) \longrightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)\) is rate \(=k\left[\mathrm{H}_{2}\right][\mathrm{NO}]^{2} .\) Which of the following mechanisms can be ruled out on the basis of the observed rate expression? Mechanism I $$ \begin{array}{c} \mathrm{H}_{2}+\mathrm{NO} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{N} \\ \mathrm{N}+\mathrm{NO} \longrightarrow \mathrm{N}_{2}+\mathrm{O} \\ \mathrm{O}+\mathrm{H}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O} \end{array} $$ $$ \begin{aligned} &\text { Mechanism II }\\\ &\begin{array}{l} \mathrm{H}_{2}+2 \mathrm{NO} \longrightarrow \mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \\ \mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \longrightarrow \mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O} \end{array} \end{aligned} $$ Mechanism III $$ \begin{aligned} 2 \mathrm{NO} & \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{2} \\ \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} & \longrightarrow \mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \\ \mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \longrightarrow & \mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O} \end{aligned} $$
Thallium(I) is oxidized by cerium(IV) as follows: $$ \mathrm{Tl}^{+}+2 \mathrm{Ce}^{4+} \longrightarrow \mathrm{Tl}^{3+}+2 \mathrm{Ce}^{3+} $$ The elementary steps, in the presence of \(\mathrm{Mn}(\mathrm{II}),\) are as follows: $$ \begin{aligned} \mathrm{Ce}^{4+}+\mathrm{Mn}^{2+} & \longrightarrow \mathrm{Ce}^{3+}+\mathrm{Mn}^{3+} \\ \mathrm{Ce}^{4+}+\mathrm{Mn}^{3+} & \longrightarrow \mathrm{Ce}^{3+}+\mathrm{Mn}^{4+} \\ \mathrm{Tl}^{+}+\mathrm{Mn}^{4+} \longrightarrow \mathrm{Tl}^{3+}+\mathrm{Mn}^{2+} \end{aligned} $$ (a) Identify the catalyst, intermediates, and the ratedetermining step if the rate law is rate \(=k\left[\mathrm{Ce}^{4+}\right]\) \(\left[\mathrm{Mn}^{2+}\right]\). (b) Explain why the reaction is slow without the catalyst. (c) Classify the type of catalysis (homogeneous or heterogeneous).
What do you think about this solution?
We value your feedback to improve our textbook solutions.