Chapter 16: Problem 1
Use Le Châtelier's principle to explain how the common ion effect affects the \(\mathrm{pH}\) of a solution.
Chapter 16: Problem 1
Use Le Châtelier's principle to explain how the common ion effect affects the \(\mathrm{pH}\) of a solution.
All the tools & learning materials you need for study success - in one app.
Get started for freeA \(10.0-\mathrm{mL}\) solution of \(0.300 \mathrm{M} \mathrm{NH}_{3}\) is titrated with a \(0.100 M \mathrm{HCl}\) solution. Calculate the \(\mathrm{pH}\) after the following additions of the \(\mathrm{HCl}\) solution: (a) \(0.0 \mathrm{~mL},\) (b) \(10.0 \mathrm{~mL}\) (c) \(20.0 \mathrm{~mL}\) (d) \(30.0 \mathrm{~mL}\) (e) \(40.0 \mathrm{~mL}\)
The molar solubility of \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}\) in a \(0.10 \mathrm{M} \mathrm{NaIO}_{3}\) solution is \(2.4 \times 10^{-11} \mathrm{~mol} / \mathrm{L} .\) What is \(K_{\mathrm{sp}}\) for \(\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2} ?\)
In a titration experiment, \(12.5 \mathrm{~mL}\) of \(0.500 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}\) neutralize \(50.0 \mathrm{~mL}\) of \(\mathrm{NaOH}\). What is the concentration of the \(\mathrm{NaOH}\) solution?
A student is asked to prepare a buffer solution at \(\mathrm{pH}=\) \(8.60,\) using one of the following weak acids: HA \(\left(K_{a}=2.7 \times 10^{-3}\right), \mathrm{HB}\left(K_{2}=4.4 \times 10^{-6}\right), \mathrm{HC}\left(K_{\mathrm{a}}=\right.\) \(2.6 \times 10^{-9}\) ). Which acid should she choose? Why?
For which of the following reactions is the equilibrium constant called a solubility product? $$ \begin{array}{l} \text { (a) } \mathrm{Zn}(\mathrm{OH})_{2}(s)+2 \mathrm{OH}^{-}(a q) \rightleftharpoons \\ \text { (b) } 3 \mathrm{Ca}^{2+}(a q)+2 \mathrm{PO}_{4}^{3-}(a q) \rightleftharpoons \mathrm{Ca}_{3}(\mathrm{OH})_{4}^{2-}(a q) \end{array} $$ (c) \(\mathrm{CaCO}_{3}(s)+2 \mathrm{H}^{+}(a q) \rightleftharpoons\) $$ \mathrm{Ca}^{2+}(a q)+\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CO}_{2}(g) $$ (d) \(\mathrm{PbI}_{2}(s) \rightleftharpoons \mathrm{Pb}^{2+}(a q)+2 \mathrm{I}^{-}(a q)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.