The \(K_{\mathrm{f}}\) for the complex ion formation between \(\mathrm{Pb}^{2+}\) and EDTA \(^{4-}\) $$ \mathrm{Pb}^{2+}+\mathrm{EDTA}^{4-} \rightleftharpoons \mathrm{Pb}(\mathrm{EDTA})^{2-} $$ is \(1.0 \times 10^{18}\) at \(25^{\circ} \mathrm{C} .\) Calculate \(\left[\mathrm{Pb}^{2+}\right]\) at equilibrium in a solution containing \(1.0 \times 10^{-3} M \mathrm{~Pb}^{2+}\) and \(2.0 \times 10^{-3} M \mathrm{EDTA}^{4-}\)

Short Answer

Expert verified
\([Pb^{2+}] = 1.0 \times 10^{-9} M\ at\ equilibrium\).

Step by step solution

01

Understand the Reaction

Given the reaction: \(\mathrm{Pb}^{2+}+\mathrm{EDTA}^{4-} \leftrightarrow \mathrm{Pb}(\mathrm{EDTA})^{2-}\). In the beginning, there are \(1.0 \times 10^{-3} M \mathrm{~Pb}^{2+}\) and \(2.0 \times 10^{-3} M \mathrm{EDTA}^{4-}\), and no \(\mathrm{Pb}(\mathrm{EDTA})^{2-}\) complex ions.
02

Setup the ICE table

According to the stoichiometry of the reaction, as the reaction proceeds to equilibrium, \(\mathrm{Pb}^{2+}\) and \( \mathrm{EDTA}^{4-}\) are reduced by x M, consequently, \( \mathrm{Pb}(\mathrm{EDTA})^{2-}\) is increased by x M. The equilibrium concentrations are thus \((1.0 \times 10^{-3} - x) M \mathrm{~Pb}^{2+}\), \((2.0 \times 10^{-3} - x) M \mathrm{EDTA}^{4-}\) and \(x M \mathrm{~Pb(EDTA)}^{2-}\).
03

Apply \(K_{\mathrm{f}}\) formula

According to the formula \( K_{\mathrm{f}} = \frac{(Pb(EDTA)^{2-})}{ (Pb^{2+})(EDTA^{4-})}\), the substitution gives us \(1.0 \times 10^{18} = \frac{x}{ (1.0 \times 10^{-3} - x)(2.0 \times 10^{-3} - x)}\).
04

Simplify and Solve

Because \(K_{\mathrm{f}}\) is huge, we can assume \(x \approx 1.0 \times 10^{-3} M\). Thus, the equation simplifies to \(1.0 \times 10^{18} = \frac{1.0 \times 10^{-3}}{(1.0 \times 10^{-3})(2.0 \times 10^{-3} - 1.0 \times 10^{-3})}\), and solving gives \(x = 1.0 \times 10^{-9} M\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free