Industrially, nitric acid is produced by the Ostwald process represented by
the following equations:
$$
\begin{aligned}
4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) & \longrightarrow 4 \mathrm{NO}(g)+6
\mathrm{H}_{2} \mathrm{O}(l) \\
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) & \longrightarrow 2 \mathrm{NO}_{2}(g) \\\2
\mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) & \longrightarrow
\mathrm{HNO}_{3}(a q)+\mathrm{HNO}_{2}(a q)
\end{aligned}$$What mass of \(\mathrm{NH}_{3}\) (in grams) must be used to
produce 1.00 ton of \(\mathrm{HNO}_{3}\) by the above procedure, assuming an 80
percent yield in each step? ( 1 ton = \(2000 \mathrm{lb} ; 1 \mathrm{lb}=453.6
\mathrm{~g} .)\)