Chapter 4: Problem 86
How does an acid-base indicator work?
Chapter 4: Problem 86
How does an acid-base indicator work?
All the tools & learning materials you need for study success - in one app.
Get started for freeSodium reacts with water to yield hydrogen gas. Why is this reaction not used in the laboratory preparation of hydrogen?
Describe in each case how you would separate the cations or anions in an aqueous solution of: (a) \(\mathrm{NaNO}_{3}\) and \(\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2},\) (b) \(\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}\) and \(\mathrm{KNO}_{3}\), (c) \(\mathrm{KBr}\) and \(\mathrm{KNO}_{3}\), (d) \(\mathrm{K}_{3} \mathrm{PO}_{4}\) and \(\mathrm{KNO}_{3}\), (e) \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) and \(\mathrm{NaNO}_{3}\).
Describe how you would prepare \(250 \mathrm{~mL}\) of a \(0.707 M \mathrm{NaNO}_{3}\) solution.
Classify the following reactions according to the types discussed in the chapter. (a) \(\mathrm{Cl}_{2}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{Cl}^{-}+\mathrm{ClO}^{-}+\mathrm{H}_{2} \mathrm{O}\) (b) \(\mathrm{Ca}^{2+}+\mathrm{CO}_{3}^{2-} \longrightarrow \mathrm{CaCO}_{3}\) (c) \(\mathrm{NH}_{3}+\mathrm{H}^{+} \longrightarrow \mathrm{NH}_{4}^{+}\) (d) \(2 \mathrm{CCl}_{4}+\mathrm{CrO}_{4}^{2-} \longrightarrow\) \(2 \mathrm{COCl}_{2}+\mathrm{CrO}_{2} \mathrm{Cl}_{2}+2 \mathrm{Cl}^{-}\) (e) \(\mathrm{Ca}+\mathrm{F}_{2} \longrightarrow \mathrm{CaF}_{2}\) (f) \(2 \mathrm{Li}+\mathrm{H}_{2} \longrightarrow 2 \mathrm{LiH}\) (g) \(\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{NaNO}_{3}+\mathrm{BaSO}_{4}\) (h) \(\mathrm{CuO}+\mathrm{H}_{2} \longrightarrow \mathrm{Cu}+\mathrm{H}_{2} \mathrm{O}\) (i) \(\mathrm{Zn}+2 \mathrm{HCl} \longrightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}\) (j) \(2 \mathrm{FeCl}_{2}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{FeCl}_{3}\) (k) \(\mathrm{LiOH}+\mathrm{HNO}_{3} \longrightarrow \mathrm{LiNO}_{3}+\mathrm{H}_{2} \mathrm{O}\)
A quantity of \(25.0 \mathrm{~mL}\) of a solution containing both \(\mathrm{Fe}^{2+}\) and \(\mathrm{Fe}^{3+}\) ions is titrated with \(23.0 \mathrm{~mL}\) of \(0.0200 M \mathrm{KMnO}_{4}\) (in dilute sulfuric acid). As a result, all of the \(\mathrm{Fe}^{2+}\) ions are oxidized to \(\mathrm{Fe}^{3+}\) ions. Next, the solution is treated with Zn metal to convert all of the \(\mathrm{Fe}^{3+}\) ions to \(\mathrm{Fe}^{2+}\) ions. Finally, the solution containing only the \(\mathrm{Fe}^{2+}\) ions requires \(40.0 \mathrm{~mL}\) of the same \(\mathrm{KMnO}_{4}\) solution for oxidation to \(\mathrm{Fe}^{3+}\). Calculate the molar concentrations of \(\mathrm{Fe}^{2+}\) and \(\mathrm{Fe}^{3+}\) in the original solution. The net ionic equation is \(\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}^{+} \longrightarrow\) \(\mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.