Chapter 6: Problem 9
Describe two exothermic processes and two endothermic processes.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 6: Problem 9
Describe two exothermic processes and two endothermic processes.
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeDescribe how chemists use Hess's law to determine the \(\Delta H_{\mathrm{f}}^{\circ}\) of a compound by measuring its heat (enthalpy of combustion.
From the following data, $$\begin{array}{r}\mathrm{C}(\text { graphite })+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g) \\ \Delta H_{\mathrm{rxn}}^{\circ}=-393.5 \mathrm{~kJ} / \mathrm{mol} \\ \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l) \\ \Delta H_{\mathrm{rxn}}^{\circ}=-285.8 \mathrm{~kJ} / \mathrm{mol} \\\2 \mathrm{C}_{2} \mathrm{H}_{6}(g)+7 \mathrm{O}_{2}(g) \longrightarrow 4 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l) \\\\\Delta H_{\mathrm{rxn}}^{\circ}=-3119.6 \mathrm{~kJ} / \mathrm{mol} \end{array} $$calculate the enthalpy change for the reaction$$2 \mathrm{C}(\text { graphite })+3 \mathrm{H}_{2}(g) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(g)$$
You are given the following data: $$\begin{aligned} \mathrm{H}_{2}(g) & \longrightarrow 2 \mathrm{H}(g) & & \Delta H^{\circ}=436.4 \mathrm{~kJ} / \mathrm{mol} \\\\\mathrm{Br}_{2}(g) & \longrightarrow 2 \mathrm{Br}(g) & & \Delta H^{\circ}=192.5 \mathrm{~kJ} /\mathrm{mol} \\\\\mathrm{H}_{2}(g)+\mathrm{Br}_{2}(g) & \longrightarrow 2 \mathrm{HBr}(g) & & \Delta H^{\circ}=-72.4 \mathrm{~kJ} / \mathrm{mol} \end{aligned} $$Calculate \(\Delta H^{\circ}\) for the reaction$$\mathrm{H}(g)+\operatorname{Br}(g) \longrightarrow \operatorname{HBr}(g)$$
Which is the more negative quantity at \(25^{\circ} \mathrm{C}: \Delta H_{\mathrm{f}}^{\circ}\) for \(\mathrm{H}_{2} \mathrm{O}(l)\) or \(\Delta H_{\mathrm{f}}^{\circ}\) for \(\mathrm{H}_{2} \mathrm{O}(g) ?\)
The \(\Delta H_{\mathrm{f}}^{\circ}\) values of the two allotropes of oxygen, \(\mathrm{O}_{2}\) and \(\mathrm{O}_{3}\), are 0 and \(142.2 \mathrm{~kJ} / \mathrm{mol}\), respectively, at \(25^{\circ} \mathrm{C}\). Which is the more stable form at this temperature?
What do you think about this solution?
We value your feedback to improve our textbook solutions.