Write equations showing the ions present after the following strong electrolytes are dissolved in water. a. \(\mathrm{HNO}_{3}\) d. \(\mathrm{SrBr}_{2}\) g. \(\mathrm{NH}_{4} \mathrm{NO}_{3}\) b. \(\mathrm{Na}_{2} \mathrm{SO}_{4}\) e. \(\mathrm{KClO}_{4}\) h. \(\mathrm{CuSO}_{4}\) c. \(\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}\) f. \(\mathrm{NH}_{4} \mathrm{Br}\) i. \(\mathrm{NaOH}\)

Short Answer

Expert verified
a. \(\mathrm{HNO}_3 \to \mathrm{H}^{+} + \mathrm{NO}_3^-\) b. \(\mathrm{SrBr}_{2} \to \mathrm{Sr}^{2+} + 2\mathrm{Br}^{-}\) c. \(\mathrm{Al}\left(\mathrm{NO}_{3}\right)_3 \to \mathrm{Al}^{3+} + 3\mathrm{NO}_{3}^{-}\) d. \(\mathrm{Na}_{2}\mathrm{SO}_{4} \to 2\mathrm{Na}^{+} + \mathrm{SO}_{4}^{2-}\) e. \(\mathrm{KClO}_{4} \to \mathrm{K}^{+} + \mathrm{ClO}_{4}^{-}\) f. \(\mathrm{NH}_{4}\mathrm{Br} \to \mathrm{NH}_{4}^{+} + \mathrm{Br}^{-}\) g. \(\mathrm{NH}_{4}\mathrm{NO}_3 \to \mathrm{NH}_{4}^+ + \mathrm{NO}_{3}^{-}\) h. \(\mathrm{CuSO}_4 \to \mathrm{Cu}^{2+} + \mathrm{SO}_{4}^{2-}\) i. \(\mathrm{NaOH} \to \mathrm{Na}^{+} + \mathrm{OH}^{-}\)

Step by step solution

01

a. HNO3 dissociation

When HNO3, a strong acid, is dissolved in water, it completely dissociates into hydrogen ions (H+) and nitrate ions (NO3-): \[ \mathrm{HNO}_3 \to \mathrm{H}^{+} + \mathrm{NO}_3^-\]
02

b. SrBr2 dissociation

When SrBr2 is dissolved in water, it dissociates into strontium ions (Sr2+) and bromide ions (Br-): \[\mathrm{SrBr}_{2} \to \mathrm{Sr}^{2+} + 2\mathrm{Br}^{-}\]
03

c. Al(NO3)3 dissociation

When Al(NO3)3 is dissolved in water, it dissociates into aluminum ions (Al3+) and nitrate ions (NO3-): \[\mathrm{Al}\left(\mathrm{NO}_{3}\right)_3 \to \mathrm{Al}^{3+} + 3\mathrm{NO}_{3}^{-}\]
04

d. Na2SO4 dissociation

When Na2SO4 is dissolved in water, it dissociates into sodium ions (Na+) and sulfate ions (SO4^2-): \[\mathrm{Na}_{2}\mathrm{SO}_{4} \to 2\mathrm{Na}^{+} + \mathrm{SO}_{4}^{2-}\]
05

e. KClO4 dissociation

When KClO4 is dissolved in water, it dissociates into potassium ions (K+) and perchlorate ions (ClO4-): \[\mathrm{KClO}_{4} \to \mathrm{K}^{+} + \mathrm{ClO}_{4}^{-}\]
06

f. NH4Br dissociation

When NH4Br is dissolved in water, it dissociates into ammonium ions (NH4+) and bromide ions (Br-): \[\mathrm{NH}_{4}\mathrm{Br} \to \mathrm{NH}_{4}^{+} + \mathrm{Br}^{-}\]
07

g. NH4NO3 dissociation

When NH4NO3 is dissolved in water, it dissociates into ammonium ions (NH4+) and nitrate ions (NO3-): \[\mathrm{NH}_{4}\mathrm{NO}_3 \to \mathrm{NH}_{4}^+ + \mathrm{NO}_{3}^{-}\]
08

h. CuSO4 dissociation

When CuSO4 is dissolved in water, it dissociates into copper(II) ions (Cu2+) and sulfate ions (SO4^2-): \[\mathrm{CuSO}_4 \to \mathrm{Cu}^{2+} + \mathrm{SO}_{4}^{2-}\]
09

i. NaOH dissociation

When NaOH, a strong base, is dissolved in water, it completely dissociates into sodium ions (Na+) and hydroxide ions (OH-): \[\mathrm{NaOH} \to \mathrm{Na}^{+} + \mathrm{OH}^{-}\]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Which solvent, water or carbon tetrachloride, would you choose to dissolve each of the following? a. \(\mathrm{KrF}_{2}\) e. \(\mathrm{MgF}_{2}\) b. \(\mathrm{SF}_{2}\) f. \(\mathrm{CH}_{2} \mathrm{O}\) c. \(\mathrm{SO}_{2}\) g. \(\mathrm{CH}_{2}=\mathrm{CH}_{2}\) d. \(\mathrm{CO}_{2}\)

A \(1.37 M\) solution of citric acid \(\left(\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)\) in water has a density of \(1.10 \mathrm{~g} / \mathrm{cm}^{3} .\) Calculate the mass percent, molality, mole fraction, and normality of the citric acid. Citric acid has three acidic protons.

How would you prepare \(1.0 \mathrm{~L}\) of an aqueous solution of sodium chloride having an osmotic pressure of \(15 \mathrm{~atm}\) at \(22^{\circ} \mathrm{C} ?\) Assume sodium chloride exists as \(\mathrm{Na}^{+}\) and \(\mathrm{Cl}^{-}\) ions in solution.

The solubility of nitrogen in water is \(8.21 \times 10^{-4} \mathrm{~mol} / \mathrm{L}\) at \(0^{\circ} \mathrm{C}\) when the \(\mathrm{N}_{2}\) pressure above water is \(0.790 \mathrm{~atm} .\) Calculate the Henry's law constant for \(\mathrm{N}_{2}\) in units of \(\mathrm{mol} / \mathrm{L} \cdot\) atm for Henry's law in the form \(C=k P\), where \(C\) is the gas concentration in mol/L. Calculate the solubility of \(\mathrm{N}_{2}\) in water when the partial pressure of nitrogen above water is \(1.10 \mathrm{~atm}\) at \(0{ }^{\circ} \mathrm{C}\).

Calculate the solubility of \(\mathrm{O}_{2}\) in water at a partial pressure of \(\mathrm{O}_{2}\) of 120 torr at \(25^{\circ} \mathrm{C}\). The Henry's law constant for \(\mathrm{O}_{2}\) is \(1.3 \mathrm{X}\) \(10^{-3} \mathrm{~mol} / \mathrm{L} \cdot\) atm for Henry's law in the form \(C=k P\), where \(C\) is the gas concentration \((\mathrm{mol} / \mathrm{L})\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free