Write expressions for \(K\) and \(K_{\mathrm{p}}\) for the following reactions. a. \(2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g) \rightleftharpoons \mathrm{N}_{2} \mathrm{CH}_{4} \mathrm{O}(s)+\mathrm{H}_{2} \mathrm{O}(g)\) b. \(2 \mathrm{NBr}_{3}(s) \rightleftharpoons \mathrm{N}_{2}(g)+3 \mathrm{Br}_{2}(g)\) c. \(2 \mathrm{KClO}_{3}(s) \rightleftharpoons 2 \mathrm{KCl}(s)+3 \mathrm{O}_{2}(g)\) d. \(\mathrm{CuO}(s)+\mathrm{H}_{2}(g) \rightleftharpoons \mathrm{Cu}(l)+\mathrm{H}_{2} \mathrm{O}(g)\)

Short Answer

Expert verified
The expressions for \(K\) and \(K_{\mathrm{p}}\) for the given reactions are: a. \(K = \frac{[\mathrm{H}_2 \mathrm{O}]}{[\mathrm{NH}_3]^2 [\mathrm{CO}_2]}\) \(K_{\mathrm{p}} = \frac{P_{\mathrm{H}_2\mathrm{O}}}{P_{\mathrm{NH}_3}^2 P_{\mathrm{CO}_2}}\) b. \(K = \frac{[\mathrm{N}_2] [\mathrm{Br}_2]^3}{1}\) \(K_{\mathrm{p}} = \frac{P_{\mathrm{N}_2}P_{\mathrm{Br}_2}^3}{1}\) c. \(K = \frac{[\mathrm{O}_2]^3}{1}\) \(K_{\mathrm{p}} = \frac{P_{\mathrm{O}_2}^3}{1}\) d. \(K = \frac{[\mathrm{H}_2\mathrm{O}]}{[\mathrm{H}_2]}\) \(K_{\mathrm{p}} = \frac{P_{\mathrm{H}_2\mathrm{O}}}{P_{\mathrm{H}_2}}\)

Step by step solution

01

Write the expression for K

The expression for the equilibrium constant for this reaction can be written as: \[K = \frac{[\mathrm{N}_2\mathrm{CH}_4\mathrm{O}] [\mathrm{H}_2\mathrm{O}]^1}{[\mathrm{NH}_3]^2 [\mathrm{CO}_2]^1}\] Since solids and liquids are excluded from the equilibrium constant, the equation becomes: \[K = \frac{1 [\mathrm{H}_2 \mathrm{O}]^1}{[\mathrm{NH}_3]^2 [\mathrm{CO}_2]^1}\]
02

Write the expression for Kp

The expression for the equilibrium constant in terms of partial pressures for this reaction can be written as: \[K_{\mathrm{p}} = \frac{P_{\mathrm{H}_2\mathrm{O}}}{P_{\mathrm{NH}_3}^2 P_{\mathrm{CO}_2}}\] b. Reaction: \(2 \mathrm{NBr}_{3}(s) \rightleftharpoons \mathrm{N}_{2}(g)+3 \mathrm{Br}_{2}(g)\)
03

Write the expression for K

Given that we don't include pure solids in the equilibrium expressions, we can write the equilibrium constant for this reaction as: \[K = \frac{[\mathrm{N}_2]^1 [\mathrm{Br}_2]^3}{1}\]
04

Write the expression for Kp

The expression for the equilibrium constant in terms of partial pressures for this reaction can be written as: \[K_{\mathrm{p}} = \frac{P_{\mathrm{N}_2}P_{\mathrm{Br}_2}^3}{1}\] c. Reaction: \(2 \mathrm{KClO}_{3}(s) \rightleftharpoons 2 \mathrm{KCl}(s)+3\mathrm{O}_{2}(g)\)
05

Write the expression for K

Given that we don't include pure solids in the equilibrium expressions, we can write the equilibrium constant for this reaction as: \[K = \frac{[\mathrm{O}_2]^3}{1}\]
06

Write the expression for Kp

The expression for the equilibrium constant in terms of partial pressures for this reaction can be written as: \[K_{\mathrm{p}} = \frac{P_{\mathrm{O}_2}^3}{1}\] d. Reaction: \(\mathrm{CuO}(s)+\mathrm{H}_{2}(g) \rightleftharpoons\mathrm{Cu}(l)+\mathrm{H}_{2} \mathrm{O}(g)\)
07

Write the expression for K

Given that we don't include pure solids and liquids in the equilibrium expressions, we can write the equilibrium constant for this reaction as: \[K = \frac{[\mathrm{H}_2\mathrm{O}]}{[\mathrm{H}_2]}\]
08

Write the expression for Kp

The expression for the equilibrium constant in terms of partial pressures for this reaction can be written as: \[K_{\mathrm{p}} = \frac{P_{\mathrm{H}_2\mathrm{O}}}{P_{\mathrm{H}_2}}\]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The reaction $$ 2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g) \rightleftharpoons 2 \mathrm{NOBr}(g) $$ has \(K_{\mathrm{p}}=109\) at \(25^{\circ} \mathrm{C}\). If the equilibrium partial pressure of \(\mathrm{Br}_{2}\) is \(0.0159\) atm and the equilibrium partial pressure of \(\mathrm{NOBr}\) is \(0.0768\) atm, calculate the partial pressure of \(\mathrm{NO}\) at equilibrium.

For a typical equilibrium problem, the value of \(K\) and the initial reaction conditions are given for a specific reaction, and you are asked to calculate the equilibrium concentrations. Many of these calculations involve solving a quadratic or cubic equation. What can you do to avoid solving a quadratic or cubic equation and still come up with reasonable equilibrium concentrations?

At \(35^{\circ} \mathrm{C}, K=1.6 \times 10^{-5}\) for the reaction $$ 2 \mathrm{NOCl}(g) \rightleftharpoons 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) $$ If \(2.0 \mathrm{~mol} \mathrm{NO}\) and \(1.0 \mathrm{~mol} \mathrm{Cl}_{2}\) are placed into a \(1.0\) - \(\mathrm{L}\) flask, calculate the equilibrium concentrations of all species.

Given the following equilibrium constants at \(427^{\circ} \mathrm{C}\), $$ \begin{array}{ll} \mathrm{Na}_{2} \mathrm{O}(s) \rightleftharpoons 2 \mathrm{Na}(l)+\frac{1}{2} \mathrm{O}_{2}(g) & K_{1}=2 \times 10^{-25} \\ \mathrm{NaO}(g) \rightleftharpoons \mathrm{Na}(l)+\frac{1}{2} \mathrm{O}_{2}(g) & K_{2}=2 \times 10^{-5} \\ \mathrm{Na}_{2} \mathrm{O}_{2}(s) \rightleftharpoons 2 \mathrm{Na}(l)+\mathrm{O}_{2}(g) & K_{3}=5 \times 10^{-29} \\ \mathrm{NaO}_{2}(s) \rightleftharpoons \mathrm{Na}(l)+\mathrm{O}_{2}(g) & K_{4}=3 \times 10^{-14} \end{array} $$ determine the values for the equilibrium constants for the following reactions. a. \(\mathrm{Na}_{2} \mathrm{O}(s)+\frac{1}{2} \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{Na}_{2} \mathrm{O}_{2}(s)\) b. \(\mathrm{NaO}(g)+\mathrm{Na}_{2} \mathrm{O}(s) \rightleftharpoons \mathrm{Na}_{2} \mathrm{O}_{2}(s)+\mathrm{Na}(l)\) c. \(2 \mathrm{NaO}(g) \rightleftharpoons \mathrm{Na}_{2} \mathrm{O}_{2}(s)\) (Hint: When reaction equations are added, the equilibrium expressions are multiplied.)

For the reaction below, \(K_{\mathrm{p}}=1.16\) at \(800 .{ }^{\circ} \mathrm{C}\). $$ \mathrm{CaCO}_{3}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(g) $$ If a 20.0-g sample of \(\mathrm{CaCO}_{3}\) is put into a \(10.0\) - \(\mathrm{L}\) container and heated to \(800 .{ }^{\circ} \mathrm{C}\), what percentage by mass of the \(\mathrm{CaCO}_{3}\) will react to reach equilibrium?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free