The formation of glucose from water and carbon dioxide is one of the more important chemical reactions in the world. Plants perform this reaction through the process of photosynthesis, creating the base of the food chain: $$ 6 \mathrm{H}_{2} \mathrm{O}(g)+6 \mathrm{CO}_{2}(g) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+6 \mathrm{O}_{2}(g) $$ At a particular temperature, the following equilibrium concentrations were found: \(\left[\mathrm{H}_{2} \mathrm{O}(g)\right]=7.91 \times 10^{-2} M,\left[\mathrm{CO}_{2}(g)\right]=\) \(9.3 \times 10^{-1} M\), and \(\left[\mathrm{O}_{2}(g)\right]=2.4 \times 10^{-3} M .\) Calculate the value of \(K\) for the reaction at this temperature.

Short Answer

Expert verified
The value of K for the photosynthesis reaction at this temperature is approximately \(2.74\times10^{-24}\).

Step by step solution

01

Write the expression for the equilibrium constant (K)

The equilibrium constant (K) is the ratio of the concentrations of the products to the concentrations of the reactants, each raised to the power of its stoichiometric coefficient in the balanced chemical equation. Using the given equation for photosynthesis, we can write the expression for K as: \[K = \frac{[\mathrm{C}_{6}\mathrm{H}_{12}\mathrm{O}_{6}]^1[\mathrm{O}_{2}]^6}{[\mathrm{H}_{2}\mathrm{O}]^6 [\mathrm{CO}_{2}]^6}\]
02

Plug in the given equilibrium concentrations

Now, substitute the equilibrium concentrations given in the problem (\([\mathrm{H}_{2}\mathrm{O}] = 7.91\times10^{-2} M\), \([\mathrm{CO}_{2}] = 9.3\times10^{-1} M\), and \([\mathrm{O}_{2}] = 2.4\times10^{-3} M\)) into the expression for K. Note that we are not given the concentration of glucose, so we can assume it remains constant and does not affect the calculation of K. \[K = \frac{[\mathrm{O}_{2}]^6}{[\mathrm{H}_{2}\mathrm{O}]^6 [\mathrm{CO}_{2}]^6} = \frac{(2.4\times10^{-3})^6}{(7.91\times10^{-2})^6 (9.3\times10^{-1})^6}\]
03

Calculate K

Now, we can calculate the equilibrium constant using the substituted values: \[ K = \frac{(2.4\times10^{-3})^6}{(7.91\times10^{-2})^6 (9.3\times10^{-1})^6} \approx 2.74\times10^{-24} \] Thus, the value of K for the photosynthesis reaction at this temperature is approximately \(2.74\times10^{-24}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Ethyl acetate is synthesized in a nonreacting solvent (not water) according to the following reaction: \(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \quad K=2.2\) \(\begin{array}{ll}\text { Acetic acid } & \text { Ethanol } & \text { Ethyl acetate }\end{array}\) For the following mixtures \((\mathrm{a}-\mathrm{d})\), will the concentration of \(\mathrm{H}_{2} \mathrm{O}\) increase, decrease, or remain the same as equilibrium is established? a. \(\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right]=0.22 \mathrm{M},\left[\mathrm{H}_{2} \mathrm{O}\right]=0.10 \mathrm{M}\), \(\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]=0.010 \mathrm{M},\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=0.010 \mathrm{M}\) b. \(\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right]=0.22 M,\left[\mathrm{H}_{2} \mathrm{O}\right]=0.0020 M\), \(\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]=0.0020 \mathrm{M},\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=0.10 \mathrm{M}\) c. \(\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right]=0.88 \mathrm{M},\left[\mathrm{H}_{2} \mathrm{O}\right]=0.12 \mathrm{M}\), \(\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]=0.044 M,\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=6.0 \mathrm{M}\) d. \(\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right]=4.4 \mathrm{M},\left[\mathrm{H}_{2} \mathrm{O}\right]=4.4 \mathrm{M}\), \(\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]=0.88 \mathrm{M},\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=10.0 \mathrm{M}\) e. What must the concentration of water be for a mixture with \(\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right]=2.0 \mathrm{M},\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]=0.10 \mathrm{M}\), and \(\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]\) \(=5.0 M\) to be at equilibrium? f. Why is water included in the equilibrium expression for this reaction?

Consider the following reactions. \(\mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \longrightarrow 2 \mathrm{HI}(g)\) and \(\mathrm{H}_{2}(g)+\mathrm{I}_{2}(s) \longrightarrow 2 \mathrm{HI}(g)\) List two property differences between these two reactions that relate to equilibrium.

The reaction $$ 2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g) \rightleftharpoons 2 \mathrm{NOBr}(g) $$ has \(K_{\mathrm{p}}=109\) at \(25^{\circ} \mathrm{C}\). If the equilibrium partial pressure of \(\mathrm{Br}_{2}\) is \(0.0159\) atm and the equilibrium partial pressure of \(\mathrm{NOBr}\) is \(0.0768\) atm, calculate the partial pressure of \(\mathrm{NO}\) at equilibrium.

At \(125^{\circ} \mathrm{C}, K_{\mathrm{p}}=0.25\) for the reaction $$ 2 \mathrm{NaHCO}_{3}(s) \rightleftharpoons \mathrm{Na}_{2} \mathrm{CO}_{3}(s)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g) $$ A 1.00-L flask containing \(10.0 \mathrm{~g} \mathrm{NaHCO}_{3}\) is evacuated and heated to \(125^{\circ} \mathrm{C}\). a. Calculate the partial pressures of \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{O}\) after equilibrium is established. b. Calculate the masses of \(\mathrm{NaHCO}_{3}\) and \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) present at equilibrium. c. Calculate the minimum container volume necessary for all of the \(\mathrm{NaHCO}_{3}\) to decompose.

Given the following equilibrium constants at \(427^{\circ} \mathrm{C}\), $$ \begin{array}{ll} \mathrm{Na}_{2} \mathrm{O}(s) \rightleftharpoons 2 \mathrm{Na}(l)+\frac{1}{2} \mathrm{O}_{2}(g) & K_{1}=2 \times 10^{-25} \\ \mathrm{NaO}(g) \rightleftharpoons \mathrm{Na}(l)+\frac{1}{2} \mathrm{O}_{2}(g) & K_{2}=2 \times 10^{-5} \\ \mathrm{Na}_{2} \mathrm{O}_{2}(s) \rightleftharpoons 2 \mathrm{Na}(l)+\mathrm{O}_{2}(g) & K_{3}=5 \times 10^{-29} \\ \mathrm{NaO}_{2}(s) \rightleftharpoons \mathrm{Na}(l)+\mathrm{O}_{2}(g) & K_{4}=3 \times 10^{-14} \end{array} $$ determine the values for the equilibrium constants for the following reactions. a. \(\mathrm{Na}_{2} \mathrm{O}(s)+\frac{1}{2} \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{Na}_{2} \mathrm{O}_{2}(s)\) b. \(\mathrm{NaO}(g)+\mathrm{Na}_{2} \mathrm{O}(s) \rightleftharpoons \mathrm{Na}_{2} \mathrm{O}_{2}(s)+\mathrm{Na}(l)\) c. \(2 \mathrm{NaO}(g) \rightleftharpoons \mathrm{Na}_{2} \mathrm{O}_{2}(s)\) (Hint: When reaction equations are added, the equilibrium expressions are multiplied.)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free