Chapter 14: Problem 136
Zinc hydroxide is an amphoteric substance. Write equations that describe \(\mathrm{Zn}(\mathrm{OH})_{2}\) acting as a Brønsted-Lowry base toward \(\mathrm{H}^{+}\) and as a Lewis acid toward \(\mathrm{OH}^{-}\).
Chapter 14: Problem 136
Zinc hydroxide is an amphoteric substance. Write equations that describe \(\mathrm{Zn}(\mathrm{OH})_{2}\) acting as a Brønsted-Lowry base toward \(\mathrm{H}^{+}\) and as a Lewis acid toward \(\mathrm{OH}^{-}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeCalculate the \(\mathrm{pH}\) of the following solutions. a. \(0.10 \mathrm{M} \mathrm{NaOH}\) b. \(1.0 \times 10^{-10} \mathrm{M} \mathrm{NaOH}\) c. \(2.0 \mathrm{M} \mathrm{NaOH}\)
What mass of \(\mathrm{NaOH}(s)\) must be added to \(1.0 \mathrm{~L}\) of \(0.050 \mathrm{M} \mathrm{NH}_{3}\) to ensure that the percent ionization of \(\mathrm{NH}_{3}\) is no greater than \(0.0010 \%\) ? Assume no volume change on addition of \(\mathrm{NaOH}\).
Consider \(50.0 \mathrm{~mL}\) of a solution of weak acid \(\mathrm{HA}=K_{\mathrm{a}}(1.00 \times\) \(10^{-6}\) ), which has a pH of \(4.000\). What volume of water must be added to make the \(\mathrm{pH}=5.000 ?\)
Place the species in each of the following groups in order of increasing acid strength. a. \(\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}\) (bond energies: \(\mathrm{H}-\mathrm{O}, 467 \mathrm{~kJ} / \mathrm{mol} ; \mathrm{H}-\mathrm{S}\), \(363 \mathrm{~kJ} / \mathrm{mol} ; \mathrm{H}-\mathrm{Se}, 276 \mathrm{~kJ} / \mathrm{mol})\) b. \(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{FCH}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{F}_{2} \mathrm{CHCO}_{2} \mathrm{H}, \mathrm{F}_{3} \mathrm{CCO}_{2} \mathrm{H}\) c. \(\mathrm{NH}_{4}^{+}, \mathrm{HONH}_{3}{ }^{+}\) d. \(\mathrm{NH}_{4}{ }^{+}, \mathrm{PH}_{4}{ }^{+}\) (bond energies: \(\mathrm{N}-\mathrm{H}, 391 \mathrm{~kJ} / \mathrm{mol} ; \mathrm{P}-\mathrm{H}, 322\) \(\mathrm{kJ} / \mathrm{mol}\) ) Give reasons for the orders you chose.
Calculate the \(\mathrm{pH}\) of a solution that contains \(1.0 \mathrm{M} \mathrm{HF}\) and \(1.0 \mathrm{M}\) \(\mathrm{HOC}_{6} \mathrm{H}_{5} .\) Also calculate the concentration of \(\mathrm{OC}_{6} \mathrm{H}_{5}^{-}\) in this solution at equilibrium.
What do you think about this solution?
We value your feedback to improve our textbook solutions.