Calculate the pH of each of the following solutions. a. \(0.100 M\) propanoic acid \(\left(\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}, K_{\mathrm{a}}=1.3 \times 10^{-5}\right)\) b. \(0.100 M\) sodium propanoate \(\left(\mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right)\) c. pure \(\mathrm{H}_{2} \mathrm{O}\) d. a mixture containing \(0.100 \mathrm{M} \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\) and \(0.100 \mathrm{M}\) \(\mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\)

Short Answer

Expert verified
a. pH of \(0.1M\) propanoic acid: 2.96 b. pH of \(0.1M\) sodium propanoate: 9.44 c. pH of pure water: 7.00 d. pH of the mixture containing \(0.1M\) propanoic acid and \(0.1M\) sodium propanoate: 4.89

Step by step solution

01

Write the equilibrium expression and Ka

The equilibrium expression for the dissociation of propanoic acid is: \(\mathrm{HC_3H_5O_2} \rightleftharpoons \mathrm{H^+} + \mathrm{C_3H_5O_2^-}\) Ka = \(\frac{[\mathrm{H^+}][\mathrm{C_3H_5O_2^-}]}{[\mathrm{HC_3H_5O_2}]}\)
02

Setup the ice table and solve for [H+]

Create an equilibrium ice table: Initial: \(0.100M\) \(0\) \(0\) Change: \(-x\) \(+x\) \(+x\) Equilibrium: \(.1-x\) \(x\) \(x\) Now substitute equilibrium values into the Ka expression: \(1.3 \times 10^{-5} = \frac{x^2}{0.1-x}\) Solving the quadratic equation, we get x = $[\mathrm{H^+}] = 1.1 \times 10^{-3}\)
03

Calculate the pH

Finally, we use the pH formula: pH = -log([H+]) pH = -log(\(1.1 \times 10^{-3}\)) ≈ 2.96 b. Calculate the pH of \(0.100 M\) sodium propanoate \(\left(\mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right)\)
04

Determine the conjugate acid- base pair and solve for Ka

Sodium propanoate's formula is \(\mathrm{NaC_3H_5O_2}\). It is the salt formed from the weak acid \(\mathrm{HC_3H_5O_2}\) we dealt with in the previous solution. The latter has a Ka value of \(1.3 \times 10^{-5}\).
05

Calculate the Kb value

Using the relationship between Ka and Kb for a conjugate acid-base pair: Ka × Kb = Kw. Solve for Kb: Kb = \(\frac{K_w}{K_a}\) = \(\frac{1.0 \times 10^{-14}}{1.3 \times 10^{-5}}\) ≈ 7.69 × 10^(-10)
06

Write the equilibrium expression and setup an ICE table

The equilibrium expression for the dissociation of propanoate ion is: \(\mathrm{C_3H_5O_2^-} + \mathrm{H_2O} \rightleftharpoons \mathrm{OH^-} + \mathrm{HC_3H_5O_2}\) Kb = \(\frac{[\mathrm{OH^-}][\mathrm{HC_3H_5O_2}]}{[\mathrm{C_3H_5O_2^-}]}\) Create an equilibrium ice table: Initial: \(0.100M\) \(0\) \(0\) Change: \(-x\) \(+x\) \(+x\) Equilibrium: \(.1-x\) \(x\) \(x\) Now substitute equilibrium values into the Kb expression: \(7.69 \times 10^{-10} = \frac{x^2}{0.1-x}\) Solving the quadratic equation, we get x = $[\mathrm{OH^-}] = 2.77 \times 10^{-5}\)
07

Calculate the pOH and then pH

pOH = -log(\(2.77 \times 10^{-5}\)) ≈ 4.56 pH = 14 - pOH ≈ 14 - 4.56 ≈ 9.44 c. Calculate the pH of pure \(\mathrm{H}_{2} \mathrm{O}\)
08

Apply the pH formula for pure water

Since pure water is neutral, we know that its pH is 7. d. Calculate the pH of a mixture containing \(0.100 \mathrm{M} \mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\) and \(0.100 \mathrm{M} \mathrm{NaC}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\)
09

Use Henderson-Hasselbalch equation

The Henderson-Hasselbalch equation for a buffer solution is: pH = pKa + log(\(\frac{[\mathrm{A^-}]}{[\mathrm{HA}]}\)) The initial concentrations of \(\mathrm{HC_3H_5O_2}\) and \(\mathrm{NaC_3H_5O_2}\) (which will dissociate into \(\mathrm{C_3H_5O_2^-}\)) are equal.
10

Calculate the pH

pH = pKa + log(\(\frac{[C_3H_5O_2^-]}{[HC_3H_5O_2]}\)) = -log(\(1.3 \times 10^{-5}\)) + log(1) = 4.89 Summary: a. pH of .1M propanoic acid: 2.96 b. pH of .1M sodium propanoate: 9.44 c. pH of pure water: 7.00 d. pH of the mixture containing .1M propanoic acid and .1M sodium propanoate: 4.89

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free