Write balanced equations for the dissolution reactions and the corresponding solubility product expressions for each of the following solids. a. \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\) b. \(\mathrm{Al}(\mathrm{OH})_{3}\) c. \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\)

Short Answer

Expert verified
a) Dissolution reaction of \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\): \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(s)} \rightleftharpoons \mathrm{Ag}^{+} _{\mathrm{(aq)}} + \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} _{\mathrm{(aq)}}\); Solubility product expression: \(K_\mathrm{sp} = [\mathrm{Ag}^{+}] [\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}]\) b) Dissolution reaction of \(\mathrm{Al}(\mathrm{OH})_{3}\): \(\mathrm{Al}(\mathrm{OH})_{3(s)} \rightleftharpoons \mathrm{Al}^{3+}_{\mathrm{(aq)}} + 3\mathrm{OH}^{-}_{\mathrm{(aq)}}\); Solubility product expression: \(K_\mathrm{sp} = [\mathrm{Al}^{3+}][\mathrm{OH}^{-}]^{3}\) c) Dissolution reaction of \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\): \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2(s)} \rightleftharpoons 3\mathrm{Ca}^{2+}_{\mathrm{(aq)}} + 2\mathrm{PO}_{4}^{3-}_{\mathrm{(aq)}}\); Solubility product expression: \(K_\mathrm{sp} = [\mathrm{Ca}^{2+}]^{3}[\mathrm{PO}_{4}^{3-}]^{2}\)

Step by step solution

01

a) Dissolution reaction of \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\)#

To write the balanced equation for the dissolution of silver acetate \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\), we can dissociate the solid into its ionic species: \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(s)} \rightleftharpoons \mathrm{Ag}^{+} _{\mathrm{(aq)}} + \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} _{\mathrm{(aq)}}\)
02

a) Solubility product expression of \(\mathrm{AgC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\)#

For the solubility product (\(K_\mathrm{sp}\)) expression, we can define the equilibrium constant for the dissolution reaction by multiplying the concentrations of the ions in their aqueous state: \(K_\mathrm{sp} = [\mathrm{Ag}^{+}] [\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}]\)
03

b) Dissolution reaction of \(\mathrm{Al}(\mathrm{OH})_{3}\)#

To write the balanced equation for the dissolution of aluminium hydroxide \(\mathrm{Al}(\mathrm{OH})_{3}\), we can dissociate the solid into its ionic species: \(\mathrm{Al}(\mathrm{OH})_{3(s)} \rightleftharpoons \mathrm{Al}^{3+}_{\mathrm{(aq)}} + 3\mathrm{OH}^{-}_{\mathrm{(aq)}}\)
04

b) Solubility product expression of \(\mathrm{Al}(\mathrm{OH})_{3}\)#

For the solubility product (\(K_\mathrm{sp}\)) expression, we can define the equilibrium constant for the dissolution reaction by multiplying the concentrations of the ions in their aqueous state: \(K_\mathrm{sp} = [\mathrm{Al}^{3+}][\mathrm{OH}^{-}]^{3}\)
05

c) Dissolution reaction of \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\)#

To write the balanced equation for the dissolution of calcium phosphate \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\), we can dissociate the solid into its ionic species: \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2(s)} \rightleftharpoons 3\mathrm{Ca}^{2+}_{\mathrm{(aq)}} + 2\mathrm{PO}_{4}^{3-}_{\mathrm{(aq)}}\)
06

c) Solubility product expression of \(\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\)#

For the solubility product (\(K_\mathrm{sp}\)) expression, we can define the equilibrium constant for the dissolution reaction by multiplying the concentrations of the ions in their aqueous state: \(K_\mathrm{sp} = [\mathrm{Ca}^{2+}]^{3}[\mathrm{PO}_{4}^{3-}]^{2}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In the presence of \(\mathrm{CN}^{-}, \mathrm{Fe}^{3+}\) forms the complex ion \(\mathrm{Fe}(\mathrm{CN})_{6}^{3-}\). The equilibrium concentrations of \(\mathrm{Fe}^{3+}\) and \(\mathrm{Fe}(\mathrm{CN})_{6}^{3-}\) are \(8.5 \times 10^{-40} M\) and \(1.5 \times 10^{-3} M\), respectively, in a \(0.11 M \mathrm{KCN}\) solution. Calculate the value for the overall formation constant of \(\mathrm{Fe}(\mathrm{CN})_{6}^{3-}\) $$\mathrm{Fe}^{3+}(a q)+6 \mathrm{CN}^{-}(a q) \rightleftharpoons \mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-} \quad K_{\text {overall }}=?$$

The solubility of the ionic compound \(\mathrm{M}_{2} \mathrm{X}_{3}\), having a molar mass of \(288 \mathrm{~g} / \mathrm{mol}\), is \(3.60 \times 10^{-7} \mathrm{~g} / \mathrm{L}\). Calculate the \(K_{\mathrm{sp}}\) of the compound.

A solution is prepared by adding \(0.10 \mathrm{~mol} \mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}_{2}\) to \(0.50 \mathrm{~L}\) of \(3.0 \mathrm{M} \mathrm{NH}_{3} .\) Calculate \(\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\right]\) and \(\left[\mathrm{Ni}^{2+}\right]\) in this solution. \(K_{\text {owerall }}\) for \(\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\) is \(5.5 \times 10^{8} .\) That is, $$5.5 \times 10^{\mathrm{x}}=\frac{\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\right]}{\left[\mathrm{Ni}^{2+}\right]\left[\mathrm{NH}_{3}\right]^{6}}$$ for the overall reaction $$\mathrm{Ni}^{2+}(a q)+6 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}^{2+}(a q)$$

Calculate the molar solubility of \(\mathrm{Al}(\mathrm{OH})_{3}, K_{s p}=2 \times 10^{-32}\).

What mass of \(\mathrm{ZnS}\left(K_{\text {? }}=2.5 \times 10^{-22}\right.\) ) will dissolve in \(300.0 \mathrm{~mL}\) of \(0.050 \mathrm{M} \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} ?\) Ignore the basic properties of \(\mathrm{S}^{2-}\) .

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free