For each of the following pairs of solids, determine which solid has the smallest molar solubility. a. \(\mathrm{FeC}_{2} \mathrm{O}_{4}, K_{\mathrm{sp}}=2.1 \times 10^{-7}\), or \(\mathrm{Cu}\left(\mathrm{IO}_{4}\right)_{2}, K_{\mathrm{sp}}=1.4 \times 10^{-7}\) b. \(\mathrm{Ag}_{2} \mathrm{CO}_{3}, K_{<\rho}=8.1 \times 10^{-12}\), or \(\mathrm{Mn}(\mathrm{OH})_{2}, K_{\mathrm{sp}}=2 \times 10^{-13}\)

Short Answer

Expert verified
a) \(Cu\left(IO_{4}\right)_{2}\) with a molar solubility of \(1.4 \times 10^{-7}\) has the smallest molar solubility compared to \(FeC_{2}O_{4}\). b) \(Mn(OH)_{2}\) with a molar solubility of \(2 \times 10^{-13}\) has the smallest molar solubility compared to \(Ag_{2}CO_{3}\).

Step by step solution

01

Write dissociation reactions and expressions for \(K_{sp}\)

For each of the two pairs of solids, write balanced dissociation reactions, and their corresponding expressions for the solubility product constant (\(K_{sp}\)). a) For \(\mathrm{FeC}_{2}\mathrm{O}_{4}\): Dissociation reaction: \(\mathrm{FeC}_{2}\mathrm{O}_{4}(s) \leftrightarrows \mathrm{Fe}^{2+}(aq) + 2\mathrm{C}_{2}\mathrm{O}^{2–}_{4}(aq)\) Expression for \(K_{sp}\): \(K_{sp} = [\mathrm{Fe}^{2+}][\mathrm{C}_{2}\mathrm{O}^{2–}_{4}]^2\) For \(\mathrm{Cu}\left(\mathrm{IO}_{4}\right)_{2}\): Dissociation reaction: \(\mathrm{Cu}\left(\mathrm{IO}_{4}\right)_{2}(s) \leftrightarrows \mathrm{Cu}^{2+}(aq) + 2\mathrm{IO}^{–}_{4}(aq)\) Expression for \(K_{sp}\): \(K_{sp} = [\mathrm{Cu}^{2+}][\mathrm{IO}^{–}_{4}]^2\) b) For \(\mathrm{Ag}_{2}\mathrm{CO}_{3}\): Dissociation reaction: \(\mathrm{Ag}_{2}\mathrm{CO}_{3}(s) \leftrightarrows 2\mathrm{Ag}^{+}(aq) + \mathrm{CO}^{2–}_{3}(aq)\) Expression for \(K_{sp}\): \(K_{sp} = [\mathrm{Ag}^{+}]^2[\mathrm{CO}^{2–}_{3}]\) For \(\mathrm{Mn}(\mathrm{OH})_{2}\): Dissociation reaction: \(\mathrm{Mn}(\mathrm{OH})_{2}(s) \leftrightarrows \mathrm{Mn}^{2+}(aq) + 2\mathrm{OH}^{–}(aq)\) Expression for \(K_{sp}\): \(K_{sp} = [\mathrm{Mn}^{2+}][\mathrm{OH}^{–}]^2\)
02

Calculate molar solubilities

For each solid, calculate its molar solubility (\(S\)) using the given \(K_{sp}\) values and the expressions for the \(K_{sp}\). a) \(\mathrm{FeC}_{2}\mathrm{O}_{4}\): Let the molar solubility of \(\mathrm{Fe}^{2+}\) and \(\mathrm{C}_{2}\mathrm{O}^{2–}_{4}\) be \(x\) and \(2x\), respectively. \(K_{sp} = 2.1 \times 10^{-7} = x \times (2x)^{2}\) Solve for \(x\) (molar solubility of \(\mathrm{FeC}_{2}\mathrm{O}_{4}\)) \(\mathrm{Cu}\left(\mathrm{IO}_{4}\right)_{2}\): Let the molar solubility of \(\mathrm{Cu}^{2+}\) and \(\mathrm{IO}^{–}_{4}\) be \(x\) and \(2x\), respectively. \(K_{sp} = 1.4 \times 10^{-7} = x \times (2x)^{2}\) Solve for \(x\) (molar solubility of \(\mathrm{Cu}\left(\mathrm{IO}_{4}\right)_{2}\)) b) \(\mathrm{Ag}_{2}\mathrm{CO}_{3}\): Let the molar solubility of \(\mathrm{Ag}^{+}\) and \(\mathrm{CO}^{2–}_{3}\) be \(2x\) and \(x\), respectively. \(K_{sp} = 8.1 \times 10^{-12} = (2x)^{2} \times x\) Solve for \(x\) (molar solubility of \(\mathrm{Ag}_{2}\mathrm{CO}_{3}\)) \(\mathrm{Mn}(\mathrm{OH})_{2}\): Let the molar solubility of \(\mathrm{Mn}^{2+}\) and \(\mathrm{OH}^{–}\) be \(x\) and \(2x\), respectively. \(K_{sp} = 2 \times 10^{-13} = x \times (2x)^{2}\) Solve for \(x\) (molar solubility of \(\mathrm{Mn}(\mathrm{OH})_{2}\))
03

Compare molar solubilities

Compare the molar solubilities calculated in Step 2 to determine which solid in each pair has the smallest molar solubility. a) Comparing the molar solubilities of \(\mathrm{FeC}_{2}\mathrm{O}_{4}\) and \(\mathrm{Cu}\left(\mathrm{IO}_{4}\right)_{2}\), the solid with the smallest molar solubility is ______. b) Comparing the molar solubilities of \(\mathrm{Ag}_{2}\mathrm{CO}_{3}\) and \(\mathrm{Mn}(\mathrm{OH})_{2}\), the solid with the smallest molar solubility is ______.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The equilibrium constant for the following reaction is \(1.0 \times 10^{23}\). EDTA is used as a complexing agent in chemical analysis. Solutions of EDTA, usually containing the disodium salt \(\mathrm{Na}_{2} \mathrm{H}_{2} \mathrm{EDTA}\), are used to treat heavy metal poisoning. Calculate \(\left[\mathrm{Cr}^{3+}\right]\) at equilibrium in a solution originally \(0.0010 M\) in \(\mathrm{Cr}^{3+}\) and \(0.050 \mathrm{M}\) in \(\mathrm{H}_{2} \mathrm{EDTA}^{2-}\) and buffered at \(\mathrm{pH}=6.00 .\)

A \(50.0-\mathrm{mL}\) sample of \(0.00200 \mathrm{M} \mathrm{AgNO}_{3}\) is added to \(50.0 \mathrm{~mL}\) of \(0.0100 M \mathrm{NaIO}_{3-}\) What is the equilibrium concentration of \(\mathrm{Ag}^{+}\) in solution? \(\left(K_{\mathrm{sp}}\right.\) for \(\mathrm{AgIO}_{3}\) is \(3.0 \times 10^{-8}\).)

Approximately \(0.14 \mathrm{~g}\) nickel(II) hydroxide, \(\mathrm{Ni}(\mathrm{OH})_{2}(s)\), dissolves per liter of water at \(20^{\circ} \mathrm{C}\). Calculate \(K_{\mathrm{sp}}\) for \(\mathrm{Ni}(\mathrm{OH})_{2}(s)\) at this temperature.

Describe how you could separate the ions in each of the following groups by selective precipitation. a. \(\mathrm{Ag}^{+}, \mathrm{Mg}^{2+}, \mathrm{Cu}^{2+}\) c. \(\mathrm{Pb}^{2+}, \mathrm{Bi}^{3+}\) b. \(\mathrm{Pb}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Fe}^{2+}\)

\(K_{\mathrm{f}}\) for the complex ion \(\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}\) is \(1.7 \times 10^{7} . K_{\text {sp }}\) for \(\mathrm{AgCl}\) is \(1.6 \times 10^{-10}\). Calculate the molar solubility of AgCl in \(1.0 \mathrm{M} \mathrm{NH}_{3}\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free